Search results: Found 4

Listing 1 - 4 of 4
Sort by
Metallic Glasses

Authors: ---
ISBN: 9783038425076 9783038425069 Year: Pages: 194 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2018-01-04 14:58:25
License:

Loading...
Export citation

Choose an application

Abstract

Due to their amorphous character and the concomitant lack of dislocations, metallic glasses exhibit physical and chemical properties that are quite different from those of other solid materials. For example, they can be twice as strong as steels, exhibit superior soft magnetic behavior and outstanding corrosion resistance and, sometimes, interesting catalytic properties, thus having potential for a widespread range of technological applications. The aim of this book is to address, from both experimental and theoretical points of view, some of the challenges to improve the glass forming ability of these materials, to optimize their overall mechanical performance, and to enhance their functional properties. Through the contributions from different renowned authors in the field, new prospects towards the development of innovative compositions and novel applications, particularly in devices with micrometer and submicrometer sizes, are provided, where the full potential of these glassy materials is being achieved.

Advanced Synchrotron Radiation Techniques for Nanostructured Materials

Author:
ISBN: 9783039216802 9783039216819 Year: Pages: 138 DOI: 10.3390/books978-3-03921-681-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Science (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Nanostructured materials exploit physical phenomena and mechanisms that cannot be derived by simply scaling down the associated bulk structures and phenomena; furthermore, new quantum effects come into play in nanosystems. The exploitation of these emerging nanoscale interactions prompts the innovative design of nanomaterials. Understanding the behavior of materials on all length scales—from the nanostructure up to the macroscopic response—is a critical challenge for materials science. Modern analytical technologies based on synchrotron radiation (SR) allow for the non-destructive investigation of the chemical, electronic, and magnetic structure of materials in any environment. SR facilities have developed revolutionary new ideas and experimental setups for characterizing nanomaterials, involving spectroscopy, diffraction, scatterings, microscopy, tomography, and all kinds of highly sophisticated combinations of such investigation techniques. This book is a collection of contributions addressing several aspects of synchrotron radiation as applied to the investigation of chemical, electronic, and magnetic structure of nanostructured materials. The results reported here provide not only an interesting and multidisciplinary overview of the chemicophysical investigations of nanostructured materials carried out by state-of-the-art SR-induced techniques, but also an exciting glance into the future perspectives of nanomaterial characterization methods.

Additive Manufacturing: Alloy Design and Process Innovations

Authors: ---
ISBN: 9783039283521 / 9783039283538 Year: Pages: 372 DOI: 10.3390/books978-3-03928-353-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.

Keywords

concrete --- slag --- valorization --- cement --- circular economy --- wire feeding additive manufacturing --- wire lateral feeding --- macro defects --- side spatters --- selective laser melting --- numerical analysis --- thermal behaviour --- AlSi10Mg alloy --- design --- disc brake --- 3D metal printing --- direct metal laser sintering --- thermal stress analysis --- radial grooves --- nickel alloys --- Hastelloy X alloy --- additive manufacturing --- microstructure --- scanning electron microscopy (SEM) --- laser powder bed fusion (LPBF) --- selective laser melting --- titanium alloy --- heat treatment --- microstructure --- microhardness measurement --- arc additive manufacturing --- Al–5Si alloy --- pulse frequency --- arc current --- microstructure --- porosity --- 2219 aluminum alloy --- constitutive model --- microstructural evolution --- continuous dynamic recrystallization --- hot deformation --- selective laser melting --- amorphous alloy --- finite element analysis --- residual stress --- 2219 aluminum alloy --- intermediate thermo-mechanical treatment --- storage energy --- CuAl2 phase --- grain refinement --- selective laser melting --- GH4169 --- temperature and stress fields --- simulation --- model --- selective laser melting --- divisional scanning --- residual stress --- deformation --- thermal conductivity --- tensile strength --- inoculation --- gray cast iron --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- performance characteristics --- AlSi10Mg --- multi-laser manufacturing --- selective laser melting --- microstructure --- mechanical property --- additive manufacturing --- metal powders --- powder flowability --- powder properties --- aluminum --- water absorption --- laser cladding deposition --- 12CrNi2 alloy steel powder --- substrate preheating --- microstructure and properties --- residual stress --- ultrafast laser --- femtosecond --- ablation --- scanning --- additive surface structuring --- hydrophobicity --- parts design --- additive manufacturing --- fused filament fabrication --- fatigue --- Taguchi --- ABS --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- quality of the as-built parts --- aluminum alloys --- selective laser melting (SLM) --- mechanical properties --- selective laser melting --- H13 tool steel --- process parameters --- scanning strategy --- support strategy --- porosity reduction --- selective laser melting --- Ti6Al4V alloy --- martensitic transformation --- texture evolution --- mechanical properties --- M300 mold steel --- elastic abrasive --- PSO-BP neural network algorithm --- parameter optimization --- WxNbMoTa --- refractory high-entropy alloy --- laser cladding deposition --- rapid solidification --- bulk metallic glasses --- selective laser melting --- Cu50Zr43Al7 --- mechanical properties --- Ti-6Al-4V --- wear --- additive manufacturing --- properties --- in-process temperature in MPBAM --- analytical modeling --- high computational efficiency --- molten pool evolution --- laser power absorption --- latent heat --- scanning strategy --- powder packing --- graphene nano-sheets (GNSs) --- epoxy solder --- intermetallic compound (IMC) --- laser powder bed fusion --- additive manufacturing --- aluminum --- composition --- mechanical properties --- localized inductive heating --- hot stamping steel blanks --- tailored properties --- magnetizer --- selective laser melting --- AlSi10Mg alloy --- dynamic properties --- impact --- crystallographic texture --- Additive manufacturing --- selective laser melting --- volumetric heat source --- thermal capillary effects --- melt pool size --- selective laser melting --- Inconel 718 --- crystallographic texture --- subgranular dendrites --- epitaxial growth --- 3D printing --- continuous carbon fiber --- thermosetting epoxy resin --- mechanical properties --- Powder bed --- fatigue --- Hot Isostatic Pressure --- Electron Beam Melting --- stability lobe diagram --- milling --- process-damping --- dynamic characteristics --- thin-walled weak rigidity parts --- Al–Si --- selective laser melting (SLM) --- microstructure --- mechanical properties --- selective laser melting --- microstructure --- defects --- Inconel 718 --- laser energy density --- selective laser melting --- molten pool dynamic behavior --- equivalent processing model --- workpiece scale --- nickel-based superalloy --- numerical simulation --- metallic glasses --- composite materials --- interfaces --- additive manufacturing --- ultrasonic bonding --- 3D printing --- Al–Mg–Si alloy --- quenching rate --- microstructures --- mechanical properties --- paint bake-hardening --- precipitates --- additive manufacturing --- powder bed fusion --- selective laser melting --- regular mixing --- ball milling --- flowability --- Ti-6Al-4V --- microstructure --- element segregation --- laves phase --- vanadium --- laser cladding --- arc additive manufacture --- Al–Mg alloy --- Mg content --- microstructure --- mechanical properties --- n/a

Additive Manufacturing: Alloy Design and Process Innovations

Authors: ---
ISBN: 9783039284146 / 9783039284153 Year: Pages: 352 DOI: 10.3390/books978-3-03928-415-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.

Keywords

concrete --- slag --- valorization --- cement --- circular economy --- wire feeding additive manufacturing --- wire lateral feeding --- macro defects --- side spatters --- selective laser melting --- numerical analysis --- thermal behaviour --- AlSi10Mg alloy --- design --- disc brake --- 3D metal printing --- direct metal laser sintering --- thermal stress analysis --- radial grooves --- nickel alloys --- Hastelloy X alloy --- additive manufacturing --- microstructure --- scanning electron microscopy (SEM) --- laser powder bed fusion (LPBF) --- selective laser melting --- titanium alloy --- heat treatment --- microstructure --- microhardness measurement --- arc additive manufacturing --- Al–5Si alloy --- pulse frequency --- arc current --- microstructure --- porosity --- 2219 aluminum alloy --- constitutive model --- microstructural evolution --- continuous dynamic recrystallization --- hot deformation --- selective laser melting --- amorphous alloy --- finite element analysis --- residual stress --- 2219 aluminum alloy --- intermediate thermo-mechanical treatment --- storage energy --- CuAl2 phase --- grain refinement --- selective laser melting --- GH4169 --- temperature and stress fields --- simulation --- model --- selective laser melting --- divisional scanning --- residual stress --- deformation --- thermal conductivity --- tensile strength --- inoculation --- gray cast iron --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- performance characteristics --- AlSi10Mg --- multi-laser manufacturing --- selective laser melting --- microstructure --- mechanical property --- additive manufacturing --- metal powders --- powder flowability --- powder properties --- aluminum --- water absorption --- laser cladding deposition --- 12CrNi2 alloy steel powder --- substrate preheating --- microstructure and properties --- residual stress --- ultrafast laser --- femtosecond --- ablation --- scanning --- additive surface structuring --- hydrophobicity --- parts design --- additive manufacturing --- fused filament fabrication --- fatigue --- Taguchi --- ABS --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- quality of the as-built parts --- aluminum alloys --- selective laser melting (SLM) --- mechanical properties --- selective laser melting --- H13 tool steel --- process parameters --- scanning strategy --- support strategy --- porosity reduction --- selective laser melting --- Ti6Al4V alloy --- martensitic transformation --- texture evolution --- mechanical properties --- M300 mold steel --- elastic abrasive --- PSO-BP neural network algorithm --- parameter optimization --- WxNbMoTa --- refractory high-entropy alloy --- laser cladding deposition --- rapid solidification --- bulk metallic glasses --- selective laser melting --- Cu50Zr43Al7 --- mechanical properties --- Ti-6Al-4V --- wear --- additive manufacturing --- properties --- in-process temperature in MPBAM --- analytical modeling --- high computational efficiency --- molten pool evolution --- laser power absorption --- latent heat --- scanning strategy --- powder packing --- graphene nano-sheets (GNSs) --- epoxy solder --- intermetallic compound (IMC) --- laser powder bed fusion --- additive manufacturing --- aluminum --- composition --- mechanical properties --- localized inductive heating --- hot stamping steel blanks --- tailored properties --- magnetizer --- selective laser melting --- AlSi10Mg alloy --- dynamic properties --- impact --- crystallographic texture --- Additive manufacturing --- selective laser melting --- volumetric heat source --- thermal capillary effects --- melt pool size --- selective laser melting --- Inconel 718 --- crystallographic texture --- subgranular dendrites --- epitaxial growth --- 3D printing --- continuous carbon fiber --- thermosetting epoxy resin --- mechanical properties --- Powder bed --- fatigue --- Hot Isostatic Pressure --- Electron Beam Melting --- stability lobe diagram --- milling --- process-damping --- dynamic characteristics --- thin-walled weak rigidity parts --- Al–Si --- selective laser melting (SLM) --- microstructure --- mechanical properties --- selective laser melting --- microstructure --- defects --- Inconel 718 --- laser energy density --- selective laser melting --- molten pool dynamic behavior --- equivalent processing model --- workpiece scale --- nickel-based superalloy --- numerical simulation --- metallic glasses --- composite materials --- interfaces --- additive manufacturing --- ultrasonic bonding --- 3D printing --- Al–Mg–Si alloy --- quenching rate --- microstructures --- mechanical properties --- paint bake-hardening --- precipitates --- additive manufacturing --- powder bed fusion --- selective laser melting --- regular mixing --- ball milling --- flowability --- Ti-6Al-4V --- microstructure --- element segregation --- laves phase --- vanadium --- laser cladding --- arc additive manufacture --- Al–Mg alloy --- Mg content --- microstructure --- mechanical properties --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by-nc-nd (4)


Language

eng (2)

english (2)


Year
From To Submit

2020 (2)

2019 (1)

2018 (1)