Search results: Found 5

Listing 1 - 5 of 5
Sort by
Multifunctional Oxide-Based Materials: From Synthesis to Application

Authors: ---
ISBN: 9783039213979 9783039213986 Year: Pages: 202 DOI: 10.3390/books978-3-03921-398-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Nanoparticle-Reinforced Polymers

Author:
ISBN: 9783039212835 9783039212842 Year: Pages: 334 DOI: 10.3390/books978-3-03921-284-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.

Keywords

chemical and physical interface --- surface modification of silica --- latex compounding method --- silica/NR composite --- thermoresponsive hyperbranched polymer --- gold nanoparticles --- in-situ synthesis --- colorimetric sensor --- silver ions --- Ag nanoparticles --- catalysis --- composite membrane --- separation --- SiO2 microspheres --- inorganic nanotubes --- PHBV --- nanomaterials --- morphology --- crystallization kinetics --- nanocomposite --- conductive polymer --- solar cell --- graphene --- graphene oxide --- power-conversion efficiency --- electrode --- active layer --- interfacial layer --- layered structures --- polymer-matrix composites --- mechanical properties --- gas barrier properties --- N-isopropylacrylamide --- N-isopropylmethacrylamide --- ratiometric temperature sensing --- FRET --- chain topology --- selective adsorption --- polymer-NP interface --- organic light-emitting diodes (OLEDs) --- PFO/MEH-PPV hybrids --- SiO2/TiO2 nanocomposite --- optoelectronic properties --- fluorescent assay --- fluorescence resonance energy transfer --- conjugated polymer nanoparticles --- gold nanoparticles --- melamine --- polymers --- composites --- carbon nanoparticles --- nano-hybrids --- nanocomposites --- sol–gel --- in situ synthesis --- metal oxides --- reduced graphene oxide --- graphene-like WS2 --- bismaleimide --- mechanical properties --- carrier transport --- polypropylene nanocomposite --- molecular chain motion --- electrical breakdown --- electric energy storage --- thermoplastic nanocomposite --- polyethylene --- power cable insulation --- electrical property --- structure-property relationship --- hybrid hydrogels --- nanoparticles --- nanosheets --- clays --- polymers --- adhesion --- n/a

Thin Films for Energy Harvesting, Conversion, and Storage

Authors: --- ---
ISBN: 9783039217243 9783039217250 Year: Pages: 174 DOI: 10.3390/books978-3-03921-725-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research findings. This thematic topic undoubtedly represents an extremely important technological direction, covering materials processing, characterization, simulation, and performance evaluation of thin films used in energy harvesting, conversion, and storage.

Advances in Nanoparticles: Synthesis, Characterization, Theoretical Modelling, and Applications

Author:
ISBN: 9783039285822 / 9783039285839 Year: Pages: 144 DOI: 10.3390/books978-3-03928-583-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2020-06-09 16:38:56
License:

Loading...
Export citation

Choose an application

Abstract

This book focuses on recent advances in the synthesis of nanoparticles, their characterization, and their applications in different fields such as catalysis, photonics, magnetism, and nanomedicine. Nanoparticles receive a large share of the worldwide research activity in contemporary materials science. This is witnessed by the number of scientific papers with ""nanoparticle"" as a keyword, increasing linearly in the last 10 years from about 16,000 in 2009 to about 50,000 in 2019. This impressive widespread interest stems from the basic science of nanoparticles, which constitute a bridge between the molecular and the bulk worlds, as well as from their technological applications. The preparation of nanoparticles is a crossroad of materials science where chemists, physicists, engineers, and even biologists frequently meet, leading to a continuous improvement of existing techniques and to the invention of new methods. The reader interested in nanoparticles synthesis and properties will here find a valuable selection of scientific cases that cannot cover all methods and applications relevant to the field, but still provide an updated overview on the fervent research activity focused on nanoparticles.

Sol-Gel Chemistry Applied to Materials Science

Author:
ISBN: 9783039213535 9783039213542 Year: Pages: 216 DOI: 10.3390/books978-3-03921-354-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Sol–gel technology is a contemporary advancement in science that requires taking a multidisciplinary approach with regard to its various applications. This book highlights some applications of the sol–gel technology, including protective coatings, catalysts, piezoelectric devices, wave guides, lenses, high-strength ceramics, superconductors, synthesis of nanoparticles, and insulating materials. In particular, for biotechnological applications, biomolecules or the incorporation of bioactive substances into the sol–gel matrix has been extensively studied and has been a challenge for many researchers. Some sol–gel materials are widely applied in light-emitting diodes, solar cells, sensing, catalysis, integration in photovoltaic devices, and more recently in biosensing, bioimaging, or medical diagnosis; others can be considered excellent drug delivery systems. The goal of an ideal drug delivery system is the prompt delivery of a therapeutic amount of the drug to the proper site in the body, where the desired drug concentration can be maintained. The interactions between drugs and the sol–gel system can affect the release rate. In conclusion, the sol–gel synthesis method offers mixing at the molecular level and is able to improve the chemical homogeneity of the resulting composite. This opens new doors not only regarding

Keywords

sol-gel method --- Fourier transform infrared spectroscopy (FTIR) analysis --- bioactivity --- biocompatibility --- sol–gel method --- organic-inorganic hybrids --- chlorogenic acid --- cytotoxicity --- biocompatibility --- silsesquioxanes --- thiol-ene click reaction --- in situ water production --- hydrophobic coatings --- cotton fabric --- paper --- NMR --- wettability --- sol-gel --- hollow sphere --- 1D structure --- sol-gel --- thin-disk laser --- Yb-doped glasses --- aluminosilicate glasses --- photoluminescence --- ultrasonic spray deposition --- tungsten oxide --- lithium lanthanum titanium oxide --- conformal coating --- Li-ion batteries --- sol-gel technique --- biomaterials --- cell proliferation --- cell cycle --- one transistor and one resistor (1T1R) --- organic thin-film transistor (OTFT) --- resistive random access memory (RRAM) --- sol-gel --- lithium-ion battery --- LiMnxFe(1?x)PO4 --- carbon coating --- pseudo-diffusion coefficient --- potential step voltammetry --- electrochemical impedance spectroscopy --- sol-gel --- oxyfluoride glass-ceramics --- nanocrystal --- optical properties --- sol-gel method --- SiO2–based hybrids --- poly(?-caprolactone) --- TG-DSC --- TG-FTIR --- X-ray diffraction analysis --- computer-aided design (CAD) --- mechanical analysis --- finite element analysis (FEA) --- composites --- organic–inorganic hybrid materials --- biomedical applications --- metal oxides --- multi-layer --- surface plasmon resonance --- optical sensors --- computer-aided design (CAD) --- mechanical analysis --- finite element analysis (FEA) --- composites --- hybrid materials --- biomedical applications

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)


License

CC by-nc-nd (5)


Language

english (4)

eng (1)


Year
From To Submit

2020 (1)

2019 (4)