Search results: Found 7

Listing 1 - 7 of 7
Sort by
Exploring Cancer Metabolic Reprogramming Through Molecular Imaging

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452347 Year: Pages: 242 DOI: 10.3389/978-2-88945-234-7 Language: English
Publisher: Frontiers Media SA
Subject: Oncology --- Medicine (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

The inclusion of oncogene-driven reprogramming of energy metabolism within the list of cancer hallmarks (Hanahan and Weinberg, Cell 2000, 2011) has provided major impetus to further investigate the existence of a much wider metabolic rewiring in cancer cells, which not only includes deregulated cellular bioenergetics, but also encompasses multiple links with a more comprehensive network of altered biochemical pathways. This network is currently held responsible for redirecting carbon and phosphorus fluxes through the biosynthesis of nucleotides, amino acids, lipids and phospholipids and for the production of second messengers essential to cancer cells growth, survival and invasiveness in the hostile tumor environment. The capability to develop such a concerted rewiring of biochemical pathways is a versatile tool adopted by cancer cells to counteract the host defense and eventually resist the attack of anticancer treatments. Integrated efforts elucidating key mechanisms underlying this complex cancer metabolic reprogramming have led to the identification of new signatures of malignancy that are providing a strong foundation for improving cancer diagnosis and monitoring tumor response to therapy using appropriate molecular imaging approaches. In particular, the recent evolution of positron emission tomography (PET), magnetic resonance spectroscopy (MRS), spectroscopic imaging (MRSI), functional MR imaging (fMRI) and optical imaging technologies, combined with complementary cellular imaging approaches, have created new ways to explore and monitor the effects of metabolic reprogramming in cancer at clinical and preclinical levels. Thus, the progress of high-tech engineering and molecular imaging technologies, combined with new generation genomic, proteomic and phosphoproteomic methods, can significantly improve the clinical effectiveness of image-based interventions in cancer and provide novel insights to design and validate new targeted therapies. The Frontiers in Oncology Research Topic “Exploring Cancer Metabolic Reprogramming Through Molecular Imaging” focusses on current achievements, challenges and needs in the application of molecular imaging methods to explore cancer metabolic reprogramming, and evaluate its potential impact on clinical decisions and patient outcome. A series of reviews and perspective articles, along with original research contributions on humans and on preclinical models have been concertedly included in the Topic to build an open forum on perspectives, present needs and future challenges of this cutting-edge research area.

Cancer Metabolism: Molecular Targeting and Implications for Therapy

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453221 Year: Pages: 114 DOI: 10.3389/978-2-88945-322-1 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Oncology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Development of an effective anticancer therapeutic necessitates the selection of cancer-related or cancer-specific pathways or molecules that are sensitive to intervention. Several such critical yet sensitive molecular targets have been recognized, and their specific antagonists or inhibitors validated as potential therapeutics in preclinical models. Yet, majority of anticancer principles or therapeutics show limited success in the clinical translation. Thus, the need for the development of an effective therapeutic strategy persists. “Altered energy metabolism” in cancer is one of the earliest known biochemical phenotypes which dates back to the early 20th century. The German scientist, Otto Warburg and his team (Warburg, Wind, Negelein 1926; Warburg, Wind, Negelein 1927) provided the first evidence that the glucose metabolism of cancer cells diverge from normal cells. This phenomenal discovery on deregulated glucose metabolism or cellular bioenergetics is frequently witnessed in majority of solid malignancies. Currently, the altered glucose metabolism is used in the clinical diagnosis of cancer through positron emission tomography (PET) imaging. Thus, the “deregulated bioenergetics” is a clinically relevant metabolic signature of cancer cells, hence recognized as one of the hallmarks of cancer (Hanahan and Weinberg 2011). Accumulating data unequivocally demonstrate that, besides cellular bioenergetics, cancer metabolism facilitates several cancer-related processes including metastasis, therapeutic resistance and so on. Recent reports also demonstrate the oncogenic regulation of glucose metabolism (e.g. glycolysis) indicating a functional link between neoplastic growth and cancer metabolism. Thus, cancer metabolism, which is already exploited in cancer diagnosis, remains an attractive target for therapeutic intervention as well. The Frontiers in Oncology Research Topic “Cancer Metabolism: Molecular Targeting and Implications for Therapy” emphases on recent advances in our understanding of metabolic reprogramming in cancer, and the recognition of key molecules for therapeutic targeting. Besides, the topic also deliberates the implications of metabolic targeting beyond the energy metabolism of cancer. The research topic integrates a series of reviews, mini-reviews and original research articles to share current perspectives on cancer metabolism, and to stimulate an open forum to discuss potential challenges and future directions of research necessary to develop effective anticancer strategies.

Cell Stress, Metabolic Reprogramming, and Cancer

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455652 Year: Pages: 68 DOI: 10.3389/978-2-88945-565-2 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Oncology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

The present eBook presents one review, five mini-reviews, and an opinion article on the achievements and perspectives of studies on important aspects of cancer cell metabolic reprogramming whose mechanisms and regulation are still largely elusive. It also sheds light on certain novel functional components, which rewires cell metabolism in tumor transformation.

Curcumin in Health and Disease

Author:
ISBN: 9783039214495 9783039214501 Year: Pages: 274 DOI: 10.3390/books978-3-03921-450-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The plant-derived polyphenol curcumin has been used in promoting health and combating disease for thousands of years. Its therapeutic effects have been successfully utilized in Ayurvedic and Traditional Chinese Medicine in order to treat inflammatory diseases. Current results from modern biomolecular research reveal the modulatory effects of curcumin on a variety of signal transduction pathways associated with inflammation and cancer. In this context, curcumin’s antioxidant, anti-inflammatory, anti-tumorigenic, and even anti-metastatic activities are discussed. On the cellular level, the reduced activity of several transcription factors (such as NFkB or AP-1) and the suppression of inflammatory cytokines, matrix degrading enzymes, metastasis related genes and even microRNAs are reported. On functional levels, these molecular effects translate into reduced proliferative, invasive, and metastatic capacity, as well as induced tumor cell apoptosis. All these effects have been observed not only in vitro but also in animal models. In combination with anti-neoplastic drugs like Taxol, kinase inhibitors, and radiation therapy, curcumin potentiates the drugs’ therapeutic power and can protect against undesired side effects. Natural plant-derived compounds like curcumin have one significant advantage: They do not usually cause side effects. This feature qualifies curcumin for primary prevention in healthy persons with a predisposition to cancer, arteriosclerosis, or chronic inflammatory diseases. Nonetheless, curcumin is considered safe, although potential toxic effects stemming from high dosages, long-term intake, and pharmacological interactions with other compounds have yet to be assessed. This Special Issue examines in detail and updates current research on the molecular targets, protective effects, and modes of action of natural plant-derived compounds and their roles in the prevention and treatment of human diseases.

Keywords

brain ischemia --- curcumin --- Alzheimer’s disease --- neurodegeneration --- amyloid --- tau protein --- autophagy --- mitophagy --- apoptosis --- genes --- glioblastoma multiforme --- autophagy --- mitophagy --- curcumin --- chaperone-mediated autophagy --- Akt/mTOR signaling --- transmission electron microscopy --- Curcuma longa --- turmeric tuber --- Zingiberaceae --- TLC bioautography --- antimicrobial agents --- ImageJ --- TLC-MS --- hydrostatic counter-current chromatography --- centrifugal partition chromatography --- curcumin --- death receptor --- apoptosis --- curcumin --- anticancer --- structure activity relationship --- cellular pathway --- mechanism of action --- delivery system --- wound --- wound healing --- diet --- nutrition --- micronutrients --- macronutrients --- curcumin --- amino-acids --- vitamins --- minerals --- curcumin --- oxidative metabolites --- inflamm-aging --- cancer --- metabolic reprogramming --- direct protein binding --- IL-17 --- STAT3 --- SHMT2 --- ageing --- anti-cancer --- autophagy --- microbiota --- senescence --- senolytics --- curcumin --- transthyretin --- amyloidosis --- protein aggregation --- protein misfolding --- drug discovery --- curcumin --- renal cell cancer --- tumor growth --- tumor proliferation --- cell cycling --- curcumin --- reflux esophagitis --- gastroprotection --- gastric ulcer --- Helicobacter pylori --- gastric cancer --- curcumin --- complementary medicine --- cancer treatment --- supportive care --- antioxidants --- anti-inflamation --- ulcerative colitis --- Crohn’s disease --- necrotizing enterocolitis --- curcumin --- inflammatory bowel disease --- curcumin --- silica --- chitosan --- nanoparticles --- anti-tumor --- antioxidant activity --- n/a

mTOR in Human Diseases

Author:
ISBN: 9783039210602 9783039210619 Year: Pages: 480 DOI: 10.3390/books978-3-03921-061-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The mechanistic target of rapamycin (mTOR) is a major signaling intermediary that coordinates favorable environmental conditions with cell growth. Indeed, as part of two functionally distinct protein complexes, named mTORC1 and mTORC2, mTOR regulates a variety of cellular processes, including protein, lipid, and nucleotide synthesis, as well as autophagy. Over the last two decades, major molecular advances have been made in mTOR signaling and have revealed the complexity of the events implicated in mTOR function and regulation. In parallel, the role of mTOR in diverse pathological conditions has also been identified, including in cancer, hamartoma, neurological, and metabolic diseases. Through a series of articles, this book focuses on the role played by mTOR in cellular processes, metabolism in particular, and highlights a panel of human diseases for which mTOR inhibition provides or might provide benefits. It also addresses future studies needed to further characterize the role of mTOR in selected disorders, which will help design novel therapeutic approaches. It is therefore intended for everyone who has an interest in mTOR biology and its application in human pathologies.

Keywords

acute myeloid leukemia --- metabolism --- mTOR --- PI3K --- phosphorylation --- epithelial to mesenchymal transition --- mTOR inhibitor --- pulmonary fibrosis --- transcriptomics --- miRNome --- everolimus --- mTOR --- thyroid cancer --- sodium iodide symporter (NIS)/SLC5A5 --- dopamine receptor --- autophagy --- AKT --- mTOR --- AMPK --- mTOR --- Medulloblastoma --- MBSCs --- mTOR --- T-cell acute lymphoblastic leukemia --- targeted therapy --- combination therapy --- mTOR --- metabolic diseases --- glucose and lipid metabolism --- anesthesia --- neurotoxicity --- synapse --- mTOR --- neurodevelopment --- mTOR --- rapamycin --- autophagy --- protein aggregation --- methamphetamine --- schizophrenia --- tumour cachexia --- mTOR --- signalling --- metabolism --- proteolysis --- lipolysis --- mTOR --- mTORC1 --- mTORC2 --- rapamycin --- rapalogues --- rapalogs --- mTOR inhibitors --- senescence --- ageing --- aging --- cancer --- neurodegeneration --- immunosenescence --- senolytics --- biomarkers --- leukemia --- cell signaling --- metabolism --- apoptosis --- miRNA --- mTOR inhibitors --- mTOR --- tumor microenvironment --- angiogenesis --- immunotherapy --- fluid shear stress --- melatonin --- chloral hydrate --- nocodazole --- MC3T3-E1 cells --- primary cilia --- mTOR complex --- metabolic reprogramming --- cancer --- microenvironment --- nutrient sensor --- oral cavity squamous cell carcinoma (OSCC) --- NVP-BEZ235 --- mTOR --- p70S6K --- mTOR --- advanced biliary tract cancers --- mTOR --- NGS --- illumina --- IonTorrent --- eIFs --- mTOR --- autophagy --- Parkinson’s disease --- mTOR --- PI3K --- cancer --- inhibitor --- therapy --- mTOR --- laminopathies --- lamin A/C --- Emery-Dreifuss muscular dystrophy (EDMD) --- Hutchinson-Gilford progeria syndrome (HGPS) --- autophagy --- cellular signaling --- metabolism --- bone remodeling --- ageing --- mTOR --- fructose --- glucose --- liver --- lipid metabolism --- gluconeogenesis --- Alzheimer’s disease --- autophagy --- mTOR signal pathway --- physical activity --- microRNA --- mTOR --- spermatogenesis --- male fertility --- Sertoli cells --- n/a

Links between Fibrogenesis and Cancer: Mechanistic and Therapeutic Challenges: Mechanistic and Therapeutic Challenges

Author:
ISBN: 9783039217069 9783039217076 Year: Pages: 348 DOI: 10.3390/books978-3-03921-707-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Internal medicine
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Tissue fibrosis may occur for unknown causes or be the consequence of many pathological conditions including chronic inflammatory or infectious diseases, autoimmune disorders, graft rejection, or malignancy. On the other hand, malignant tumors have been identified in fibrotic tissues decades ago, and now accumulating evidence suggests that fibrotic lesions enhance the risk of cancer in several organs such as liver, lungs, and breast. Disruption of an organ parenchymal cells and of its normal structural scaffold during tissue fibrogenesis appears to induce loss of cell polarity, promoting uncontrolled cell proliferation that may eventually lead to cancer development. Many cellular and molecular abnormalities including aberrant expression of microRNAs, genetic and epigenetic alterations, evasion or delayed apoptosis, unregulated intracellular signal pathways, and dysregulation or defective intercellular communications have been proposed to explain this link between fibrogenesis and carcinogenesis. However, the precise mechanisms of this fibrosis-to-cancer transition remain unclear. This book presents a collection of reviews and original articles summarizing recent advances in understanding the molecular mechanisms of cancer development in fibrotic organs.

Keywords

lung cancer --- renal injury --- fibrosis --- crizotinib --- anaplastic lymphoma kinase --- cystic formation --- pulmonary fibrosis --- butylidenephthalide --- SOX2 --- type I collagen --- bleomycin --- YAP --- TAZ --- Hippo pathway --- fibrosis --- cancer --- mechanotransduction --- TGF-? --- Wnt --- uterine fibroid --- leiomyoma --- tumor --- tumor necrosis factor ? --- cytokine --- growth factor --- inflammation --- clinical symptoms --- pathophysiology --- therapy --- hepatocellular carcinoma --- cirrhosis --- regeneration --- inflammation --- cytokines --- genetic instability --- reactive oxygen species --- idiopathic pulmonary fibrosis (IPF) --- lung cancer (LC) --- non-small cell lung cancer (NSCLC) --- acute lung injury --- protein S --- apoptosis --- signal pathway --- Erk1/2 --- lipopolysaccharide --- uterine fibroid --- leiomyoma --- smooth muscle tumor of uncertain malignant potential --- leiomyosarcoma --- myometrium --- immunohistochemistry --- marker --- pathology --- tumor --- diagnosis --- cancer-associated fibroblasts --- tumor microenvironment --- nanoparticles --- breast cancer --- antitumor efficacy --- cirrhosis --- HBV --- HCV --- hepatocellular carcinoma --- idiopathic pulmonary fibrosis --- lung cancer --- pathogenesis --- common pathways --- hepatocellular carcinoma (HCC) --- fibrosis --- cancer-associated fibroblasts (CAFs) --- hepatic stellate cells (HSCs) --- tumor microenvironment --- hepatocellular carcinoma --- non-alcoholic steatohepatitis --- fibrosis --- hepatic stellate cells --- extracellular matrix --- carcinogenesis --- angiogenesis --- cancer-associated fibroblasts --- extracellular matrix --- fibrosis --- heterogeneity --- interstitial fluid pressure --- metabolic reprogramming --- transforming growth factor-? --- tumor stiffness --- GPR40 --- GPR120 --- DHA --- omega-3 fatty acid --- SREBP-1 --- hepatocytes --- EMT --- lncRNA --- metastasis --- miRNA --- SMAD --- TGF-? --- targeted therapy --- tumor microenvironment --- n/a

Renal Cell Carcinoma

Author:
ISBN: 9783039286386 / 9783039286393 Year: Pages: 500 DOI: 10.3390/books978-3-03928-639-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Renal cancer is a health problem of major concern worldwide. Although tyrosine kinase inhibitors and immune check-point blockade treatments, alone or in combination, are giving promising results, failures are quite frequent due to intratumor heterogeneity and to the acquisition of drug resistance. The spectrum of renal cell carcinoma subtypes is wide. Up to 70–80% of renal tumors are clear cell renal cell carcinomas, a clinically aggressive tumor subtype linked to VHL gene inactivation. Next in frequency, the papillary renal cell carcinoma category encompasses an intricate puzzle of classic and newly described entities with poorly defined limits, some of them pending definite clarification. Likewise, the chromophobe–oncocytoma duality, the so-called hybrid tumors and oncocytic neoplasms, remain to be well profiled. Finally, a growing list of very uncommon renal tumors linked to specific molecular signatures fulfill the current portrait of renal cell neoplasia. This Special Issue of Cancers regards RCC from very different perspectives, from the intimate basic mechanisms governing this disease to the clinical practice principles of their diagnoses and treatments. The interested reader will have the opportunity to contact with some of the most recent findings and will be updated with excellent reviews.

Keywords

ghrelin --- aurora A --- MMP10 --- invasion --- sarcomatoid --- RCC --- immunotherapy --- checkpoint inhibitors --- survival --- PD-L1 --- chronic kidney disease --- nephrectomy --- overall survival --- recurrence free survival --- renal cell carcinoma --- statins --- uric acid --- intratumour heterogeneity --- metastatic ccRCC --- copy number alteration --- mutation --- gene expression --- MiT family translocation renal cell carcinoma --- Xp11 translocation renal cell carcinoma --- t(6 --- 11) translocation renal cell carcinoma --- FISH --- TFE3 --- TFEB --- TFEB-amplified renal cell carcinoma --- renal cell carcinoma --- immune checkpoint inhibitors --- tyrosine kinase inhibitors --- efficacy --- toxicity --- cytoreductive nephrectomy --- Papillary renal cell carcinoma (pRCC) --- proteome profiling --- metabolome profiling --- glutathione metabolism --- metabolic reprogramming --- IL4R? --- IL13R?1 --- renal cell carcinoma --- JAK2 --- FOXO3 --- clear cell renal cell carcinoma --- identification of circular RNAs --- experimental validation of circular RNA --- diagnostic and prognostic markers --- circular RNAs in a clinico-genomic predictive model --- cancer-specific survival --- recurrence-free survival --- overall survival --- chromophobe renal cell carcinoma --- pale cell --- eosinophilic variant --- chromosomal loss --- copy number analysis --- renal cell carcinoma --- clear cell renal cell carcinoma --- AMP-activated protein kinases --- immunohistochemistry --- prognosis --- SMAD proteins --- transforming growth factor beta --- renal cell cancer --- microRNA --- metabolome --- proliferation --- PPP --- pentose phosphate pathway --- TCA cycle --- miR-155-5p --- miR-146a-5p --- TCGA --- renal cell carcinoma --- metastasis --- MTA2 --- MMP-9 --- miR-133b --- kidney cancer --- immunotherapy --- renal cell --- inflammation markers --- programmed death-ligand 1 --- immune checkpoint inhibitors --- prognostic factors --- predictive factors --- glutathione transferase omega 1 --- glutathione transferase omega 2 --- polymorphism --- PI3K/Akt/mTOR --- Raf/MEK/ERK --- IL-1? --- pro-IL-1? --- gene signature --- renal cancer --- survival prediction --- polybromo-1 --- PBRM1 --- renal cell carcinoma --- biomarker --- prognosis --- predictive role --- collecting duct carcinoma --- RNA sequencing --- solute carrier proteins --- kidney --- renal cell carcinoma --- molecular genetic features --- practical approach --- review --- renal cell carcinoma --- sarcomatoid --- immunotherapy --- renal cell carcinoma --- checkpoint inhibitors --- VEGF inhibitors --- mTOR inhibitors --- kidney --- emerging entity --- new entity --- oncocytic renal tumor --- unclassified renal cell carcinoma --- unclassified renal tumor --- anaplastic lymphoma kinase rearrangement --- ALK --- ESC --- HOT --- LOT --- drug sensitivity --- immune infiltration --- renal cancer --- targeted therapy --- tumor slice culture --- clear cell Renal Cell Carcinoma --- urine --- glycoproteomics --- N-glycomapping --- label-free --- glycomarkers --- everolimus --- EVI1 --- genetic association --- mTOR --- clear cell renal cell carcinoma --- curcumin --- renal cell cancer --- tumor adhesion --- tumor migration --- integrins --- NK cells --- kidney cancer --- renal cell carcinoma --- IL-2 --- cancer immunotherapy --- tumor microenvironment --- von Hippel–Lindau --- EMT like --- hyperosmolality --- chromophobe renal cell carcinoma --- copy number loss --- CDKN1A expression --- patient survival --- prognosis --- n/a

Listing 1 - 7 of 7
Sort by
Narrow your search