Search results: Found 5

Listing 1 - 5 of 5
Sort by
Coronal Magnetometry

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452200 Year: Pages: 172 DOI: 10.3389/978-2-88945-220-0 Language: English
Publisher: Frontiers Media SA
Subject: Astronomy (General) --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Magnetism defines the complex and dynamic solar corona. It determines the magnetic loop structure that dominates images of the corona, and stores the energy necessary to drive coronal eruptive phenomena and flare explosions. At great heights the corona transitions into the ever-outflowing solar wind, whose speed and three-dimensional morphology are controlled by the global coronal magnetic field. Coronal magnetism is thus at the heart of any understanding of the nature of the corona, and essential for predictive capability of how the Sun affects the Earth. Coronal magnetometry is a subject that requires a concerted effort to draw together the different strands of research happening around the world. Each method provides some information about the field, but none of them can be used to determine the full 3D field structure in the full volume of the corona. Thus, we need to combine them to understand the full picture. The purpose of this Frontiers Research Topic on Coronal Magnetometry is to provide a forum for comparing and coordinating these research methods, and for discussing future opportunities.

Recent Developments of Nanofluids

Author:
ISBN: 9783038428336 9783038428343 Year: Pages: VIII, 150 Language: Englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Physics (General) --- Chemistry (General)
Added to DOAB on : 2018-08-24 15:50:37
License:

Loading...
Export citation

Choose an application

Abstract

Over the past two decades, there has been increased attention in the research of nanofluid due to its widely expanded domain in many industrial and technological applications. Major advances in the modeling of key topics such as nanofluid, MHD, heat transfer, convection, porous media, Newtonian/non-Newtonian fluids have been made and finally published in the special issue on recent developments in nanofluids for Applied Sciences. The present attempt is to edit the special issue in a book form. Although, this book is not a formal textbook even than it will definitely be useful for research students and university teachers in overcoming the difficulties occurring in the said topic while dealing with the nonlinear governing equations. On one side the real world problems in mathematics, physics, biomechanics, engineering and other disciplines of sciences are mostly described by the set of nonlinear equations whereas on the other hand, it is often more difficult to get an analytic solution or even a numerical one. This book has successfully handled this challenging job with latest techniques. In addition the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Radio Galaxies at TeV Energies

Author:
ISBN: 9783039287505 / 9783039287512 Year: Pages: 188 DOI: 10.3390/books978-3-03928-751-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Astronomy (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

It is common believe that the centers of all galaxies exhibit supermassive black holes with masses ranging from millions up to billions of the mass of our Sun. By accreting surrounding matter, the luminosity of these galactic nuclei can outshine the emission of their host galaxies. If this is the case, they are called active galactic nuclei. Some of these objects eject powerful outflows composed of plasma, called jets. These jets can produce non-thermal radiation which observable across the entire electromagnetic spectrum from radio up to the gamma-ray frequencies. At highest frequencies (TeV range) most of the detected active galaxies have jets directed along or close to the line of sight. However, also galaxies with larger angles to the line of sight showing fascinating features were discovered, in seeming contradiction to traditional models for these so-called radio galaxies. Thus, the latter are of particular importance for understanding active galactic nuclei in general. This Special Issue contains reviews and research articles about the current knowledge of radio galaxies at TeV energies, including observational results and theoretical models. It is intended to guide the interested reader deeper into this fascinating discipline of modern day astronomy.

Continuous Casting

Author:
ISBN: 9783039213214 9783039213221 Year: Pages: 250 DOI: 10.3390/books978-3-03921-322-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Continuous casting is an industrial process whereby molten metal is solidified into a semi-finished billet, bloom, or slab for subsequent rolling in finishing mills; it is the most frequently used process to cast not only steel, but also aluminium and copper alloys. Since its widespread introduction for steel in the 1950s, it has evolved to achieve improved yield, quality, productivity and cost efficiency. It allows lower-cost production of metal sections with better quality, due to the inherently lower costs of continuous, standardized production of a product, as well as providing increased control over the process through automation. Nevertheless, challenges remain and new ones appear, as ways are sought to minimize casting defects and to cast alloys that could originally only be cast via other means. This Special Issue of the journal ""Metals"" consists of 14 research articles that cover many aspects of experimental work and theoretical modelling related to the ongoing development of continuous casting processes.

Keywords

slab continuous casting --- hybrid simulation model --- uneven secondary cooling --- numerical simulation --- molten steel flow --- solidification --- inclusion motion --- inclusion entrapment --- billet continuous casting --- swirling flow tundish --- multiphase flow --- heat transfer --- mold --- continuous casting --- numerical simulation --- round bloom --- continuous casting --- final electromagnetic stirring --- electromagnetic field --- polycrystalline model --- pores --- inclusions --- mechanism --- beam blank --- crystal --- propagation --- asymptotic analysis --- numerical simulation --- continuous casting --- air mist spray cooling --- continuous casting --- heat flux --- HTC --- secondary cooling --- thin-slab cast direct-rolling --- austenite grain coarsening --- grain growth control --- liquid core reduction --- secondary cooling --- two-phase pinning --- annular argon blowing --- upper nozzle --- flow behavior --- argon gas distribution --- tundish --- continuous casting --- bulge deformation --- thermomechanical coupling --- segmented roller --- finite element analysis --- steel tundish --- baffle --- flow field --- velocity --- PIV --- multi-source information fusion --- data stream --- continuous casting --- roll gap value --- prediction --- global optimization --- support vector regression --- variational mode decomposition --- empirical mode decomposition --- support vector regression --- mold level --- continuous casting --- magnetohydrodynamics --- fluid flow --- bubbles --- inclusions --- entrapment --- entrainment --- heat transfer --- solidification --- slab mold --- continuous casting --- n/a

Symmetry and Fluid Mechanics

Author:
ISBN: 9783039284269 9783039284276 Year: Pages: 446 DOI: 10.3390/books978-3-03928-427-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Since the 1980s, attention has increased in the research of fluid mechanics due to its wide application in industry and phycology. Major advances have occurred in the modeling of key topics such Newtonian and non-Newtonian fluids, nanoparticles, thermal management, and physiological fluid phenomena in biological systems, which have been published in this Special Issue on symmetry and fluid mechanics for Symmetry. Although, this book is not a formal textbook, it will be useful for university teachers, research students, and industrial researchers and for overcoming the difficulties that occur when considering the nonlinear governing equations. For such types of equations, obtaining an analytic or even a numerical solution is often more difficult. This book addresses this challenging job by outlining the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Keywords

stagnation point flow --- numerical solution --- magnetic field --- nanofuid --- unsteady rotating flow --- porous medium --- aqueous suspensions of CNT’s --- nonlinear thermal radiation --- viscous dissipation effect --- HAM --- chemical reaction --- activation energy --- peristalsis --- couple stress fluid --- nanoparticle --- Keller-box method --- Newtonian heating --- nonlinear thermal radiation --- nonlinear stretching cylinder --- homogeneous/heterogeneous reactions --- nanofluid --- steady laminar flow --- nanofluid --- heat source/sink --- magnetic field --- stretching sheet --- SWCNT/MWCNT nanofluid --- thin needle --- classical and fractional order problems --- APCM technique --- SWCNTs --- MWCNTs --- stretched surface --- rotating system --- nanofluid --- MHD --- thermal radiation --- HAM --- nonlinear hydroelastic waves --- uniform current --- thin elastic plate --- solitary waves --- PLK method --- Permeable walls --- suction/injection --- nanofluids --- porous medium --- mixed convection --- magnetohydrodynamic (MHD) --- dual solution --- stability analysis --- Darcy Forchheimer model --- nanofluid --- exponential sheet --- Jeffrey fluid --- laminar g-Jitter flow --- inclined stretching sheet --- heat source/sink --- Magnetohydrodynamic (MHD) --- Jefferey, Maxwell and Oldroyd-B fluids --- Cattaneo–Christov heat flux --- homogeneous–heterogeneous reactions --- analytical technique --- Numerical technique --- viscous fluid --- Caputo–Fabrizio time-fractional derivative --- Laplace and Fourier transformations --- side walls --- oscillating shear stress --- forced convection --- microducts --- Knudsen number --- Nusselt number --- artificial neural networks --- particle swarm optimization --- Casson fluid --- chemical reaction --- cylinder --- heat generation --- magnetohydrodynamic (MHD) --- slip --- Carreau fluid --- Cattaneo–Christov heat flux model --- convective heat boundary condition --- temperature dependent thermal conductivity --- homogeneous-heterogeneous reactions --- integer and non-integer order derivatives --- GO-W/GO-EG nanofluids --- Marangoni convection --- FDE-12 numerical method --- couple stress fluid --- Hafnium particles --- Couette–Poiseuille flow --- shooting method --- magnetic field --- Darcy–Brinkman porous medium --- viscous dissipation --- slip conditions --- porous dissipation --- permeable sheet --- stretchable rotating disk --- CNTs (MWCNTs and SWCNTs) --- velocity slip --- convective boundary condition --- OHAM --- Casson fluid model --- rotating rigid disk --- nanoparticles --- Magnetohydrodynamics (MHD) --- Oil/MWCNT nanofluid --- heat transfer --- finite volume method --- laminar flow --- slip coefficient --- microchannel --- arched surface --- nonlinear thermal radiation --- molecular diameter --- Al2O3 nanoparticles --- streamlines --- isotherms --- RK scheme --- peristaltic transport --- tapered channel --- porous medium --- smart pumping for hemodialysis --- thermal radiation --- compressible viscous flow --- symmetric linear equations --- generalized finite difference scheme --- kernel gradient free --- Lagrangian approach --- Newtonian and non-Newtonian fluids --- nanofluids and particle shape effects --- convective heat and mass transfer --- steady and unsteady flow problems --- multiphase flow simulations --- fractional order differential equations --- thermodynamics --- physiological fluid phenomena in biological systems

Listing 1 - 5 of 5
Sort by
Narrow your search