Search results: Found 5

Listing 1 - 5 of 5
Sort by
Significance of antigen and epitope specificity in tuberculosis

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194513 Year: Pages: 119 DOI: 10.3389/978-2-88919-451-3 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Dissection of the specificity of host immune responses following infection with Mycobacterium tuberculosis is essential for designing effective vaccination and diagnostic biomarkers as well as for better understanding of immunopathogenesis of active tuberculosis. The articles in this volume of the Topics in Microbial Immunology review the significance of this area of research from both experimental models and clinical surveys. This includes T cell recognition of MHC permissive epitopes, use of algorithms for genome-based prediction of immunodominant epitopes, evaluation of candidate antigens/epitopes and adjuvants for vaccination and immunodiagnosis. Future research strategies indicate the need for better understanding of the relationship between epitope specificity and the phenotype of responding T cells and search for biomarkers with a capacity to discriminate and predict the change from latent infection to active disease. These research avenues have important potentials for improving the prevention and control of tuberculosis.

Regulation of immune system cell functions by protein kinase C

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193264 Year: Pages: 129 DOI: 10.3389/978-2-88919-326-4 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Members of the protein kinase C (PKC) family of Ser/Thr kinases are encoded by nine distinct but closely related genes, which give rise to more than 12 different protein isoforms via a mechanism of alternative RNA splicing. Most PKC proteins are ubiquitously expressed and participate in a plethora of functions in most cell types. A majority of PKC isoforms is also expressed in cells of the immune system in which they are involved in signal transduction downstream of a range of surface receptors, including the antigen receptors on T and B lymphocytes. PKC proteins are central to signal initiation and propagation, and to the regulation of processes leading to immune cell proliferation, differentiation, homing and survival. As a result, PKC proteins directly impact on the quality and quantity of immune responses and indirectly on the host resistance to pathogens and tendency to develop immune deficiencies and autoimmune diseases. A significant progress was made in recent years in understanding the regulation of PKC enzymes, their mechanism of action and their role in determining immunocyte behavior This volume reviews the most significant contributions made in the field of immune cell regulation by PKC enzymes. Several manuscripts are devoted to the role of distinct PKC isoforms in the regulation of selected immunocyte responses. Additional manuscripts review more general mechanisms of regulation of PKC enzymes, either by post-translational modifications, such as phosphorylation or controlled proteolysis, or by interaction with different binding proteins that may alter the conformation, activity and subcellular location of PKC. Both types of mechanisms can introduce conformational changes in the molecule, which may affect its ability to interact with cofactors, ATP, or substrates. This topic will be followed by a discussion on the positive and negative impact of individual PKC isoforms on cell cycle regulation. A second section of this volume concentrates on selected topics relevant to role of the novel PKC isoform, PKC-theta, in T lymphocyte function. PKC-theta plays important and some non-redundant roles in T cell activation and is a key isoform that recruits to the immunological synapse - the surface membrane area in T cells that comes in direct contact with antigen presenting cells. The immunological synapse is formed in T cells within seconds following the engagement of the TCR by a peptide-bound MHC molecule on the surface of antigen-presenting cells. It serves as a platform for receptors, adaptor proteins, and effector molecules, which assemble into multimolecular activation complexes required for signal transduction. The unique ability of PKC-theta to activate the NF-kB, AP-1 and NF-AT transcription factors is well established, and recent studies contributed essential information on the mechanisms involved in the recruitment of PKC-theta to the center of the immunological synapse and the nature of its substrates and the role of their phosphorylated forms in signal transduction. Additional review manuscripts will describe the unique behavior of PKC-theta in regulatory T cells and its role in the regulation of other cell populations, including those of the innate immune response. This volume brings together leading experts from different disciplines that review the most recent discoveries and offer new perspectives on the contributions of PKC isoforms to biochemical processes and signaling events in different immune cell populations and their impact on the overall host immune response.

The metabolic challenges of immune cells in health and disease

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196227 Year: Pages: 80 DOI: 10.3389/978-2-88919-622-7 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Obesity and its co-morbidities, including atherosclerosis, insulin resistance and diabetes, are a world-wide epidemic. Inflammatory immune responses in metabolic tissues have emerged as a universal feature of these metabolic disorders. While initial work highlighted the contribution of macrophages to tissue inflammation and insulin resistance, recent studies demonstrate that cells of the adaptive immune compartment, including T and B lymphocytes and dendritic cells also participate in obesity-induced pathogenesis of these conditions. However, the molecular and cellular pathways by which the innate and adaptive branches of immunity control tissue and systemic metabolism remain poorly understood. To engage in growth and activation, cells need to increase their biomass and replicate their genome. This process presents a substantial bioenergetic challenge: growing and activated cells must increase ATP production and acquire or synthesize raw materials, including lipids, proteins and nucleic acids. To do so, they actively reprogram their intracellular metabolism from catabolic mitochondrial oxidative phosphorylation to glycolysis and other anabolic pathways. This metabolic reprogramming is under the control of specific signal transduction pathways whose underlying molecular mechanisms and relevance to physiology and disease are subject of considerable current interest and under intense study. Recent reports have elucidated the physiological role of metabolic reprogramming in macrophage and T cell activation and differentiation, B- and dendritic cell biology, as well as in the crosstalk of immune cells with endothelial and stem cells. It is also becoming increasingly evident that alterations of metabolic pathways play a major role in the pathogenesis of chronic inflammatory disorders. Due to the scientific distance between immunologists and experts in metabolism (e.g., clinicians and biochemists), however, there has been limited cross-talk between these communities. This collection of articles aims at promoting such cross-talk and accelerating discoveries in the emerging field of immunometabolism.

Immune System Modeling and Analysis

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195015 Year: Pages: 401 DOI: 10.3389/978-2-88919-501-5 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

The rapid development of new methods for immunological data collection - from multicolor flow cytometry, through single-cell imaging, to deep sequencing - presents us now, for the first time, with the ability to analyze and compare large amounts of immunological data in health, aging and disease. The exponential growth of these datasets, however, challenges the theoretical immunology community to develop methods for data organization and analysis. Furthermore, the need to test hypotheses regarding immune function, and generate predictions regarding the outcomes of medical interventions, necessitates the development of mathematical and computational models covering processes on multiple scales, from the genetic and molecular to the cellular and system scales. The last few decades have seen the development of methods for presentation and analysis of clonal repertoires (those of T and B lymphocytes) and phenotypic (surface-marker based) repertoires of all lymphocyte types, and for modeling the intricate network of molecular and cellular interactions within the immune systems. This e-Book, which has first appeared as a ‘Frontiers in Immunology’ research topic, provides a comprehensive, online, open access snapshot of the current state of the art on immune system modeling and analysis.

Stem Cell and Biologic Scaffold Engineering

Author:
ISBN: 9783039214976 9783039214983 Year: Pages: 110 DOI: 10.3390/books978-3-03921-498-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Tissue engineering and regenerative medicine is a rapidly evolving research field which effectively combines stem cells and biologic scaffolds in order to replace damaged tissues. Biologic scaffolds can be produced through the removal of resident cellular populations using several tissue engineering approaches, such as the decellularization method. Indeed, the decellularization method aims to develop a cell-free biologic scaffold while keeping the extracellular matrix (ECM) intact. Furthermore, biologic scaffolds have been investigated for their in vitro potential for whole organ development. Currently, clinical products composed of decellularized matrices, such as pericardium, urinary bladder, small intestine, heart valves, nerve conduits, trachea, and vessels, are being evaluated for use in human clinical trials. Tissue engineering strategies require the interaction of biologic scaffolds with cellular populations. Among them, stem cells are characterized by unlimited cell division, self-renewal, and differentiation potential, distinguishing themselves as a frontline source for the repopulation of decellularized matrices and scaffolds. Under this scheme, stem cells can be isolated from patients, expanded under good manufacturing practices (GMPs), used for the repopulation of biologic scaffolds and, finally, returned to the patient. The interaction between scaffolds and stem cells is thought to be crucial for their infiltration, adhesion, and differentiation into specific cell types. In addition, biomedical devices such as bioreactors contribute to the uniform repopulation of scaffolds. Until now, remarkable efforts have been made by the scientific society in order to establish the proper repopulation conditions of decellularized matrices and scaffolds. However, parameters such as stem cell number, in vitro cultivation conditions, and specific growth media composition need further evaluation. The ultimate goal is the development of “artificial” tissues similar to native ones, which is achieved by properly combining stem cells and biologic scaffolds and thus bringing them one step closer to personalized medicine. The original research articles and comprehensive reviews in this Special Issue deal with the use of stem cells and biologic scaffolds that utilize state-of-the-art tissue engineering and regenerative medicine approaches.

Listing 1 - 5 of 5
Sort by
Narrow your search