Search results: Found 2

Listing 1 - 2 of 2
Sort by
Application of Nanotechnology in Food Science and Food Microbiology

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454884 Year: Pages: 213 DOI: 10.3389/978-2-88945-488-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology --- Botany
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

Nanotechnology is a fast-evolving discipline that already produces outstanding basic knowledge and industrial applications for the benefit of society. It is a new emerging and fascinating field of science, that permits advanced research in many areas. The first applications of nanotechnology mainly concerned material sciences; applications in the agriculture and food sectors are still emerging. Food science nanotechnology is an area of rising attention that unties new possibilities for the food industry. Due to the rapid population growth there is a need to produce food and beverages in a more efficient, safe and sustainable way. The application of nanotechnology in food has also gained great importance in recent years in view of its potential application to improve production of food crops, enhance nutrition, packaging and food safety overall. The new materials, products and applications are anticipated to bring lots of improvements to the food and related sectors, impacting agriculture and food production, food processing, distribution, storage, sanitation as well as the development of innovative products and sensors for effective detection of contaminants. Therefore, nanotechnology present with a large potential to provide an opportunity for the researchers of food science, food microbiology and other fields, to develop new tools for incorporation of nanoparticles into food system that could augment existing functions and add new ones.However, the number of relative publications currently available is rather small. The present Research Topic aims to provide with basic information and practical applications regarding all aspects related to the applications of nanotechnology in food science and food microbiology, namely, nanoparticle synthesis, especially through the eco-friendly perspective, potential applications in food processing, biosensor development, alternative strategies for effective pathogenic bacteria monitoring as well as the possible effects on human health and the environment.

Polymeric Systems as Antimicrobial or Antifouling Agents

Authors: ---
ISBN: 9783039284566 / 9783039284573 Year: Pages: 400 DOI: 10.3390/books978-3-03928-457-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Social Sciences --- Sociology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The rapid increase in the emergence of antibiotic-resistant bacterial strains, combined with a dwindling rate of discovery of novel antibiotic molecules, has created an alarming issue worldwide. Although the occurrence of resistance in microbes is a natural process, the overuse of antibiotics is known to increase the rate of resistance evolution. Under antibiotic treatment, susceptible bacteria inevitably die, while resistant microorganisms proliferate under reduced competition. Therefore, the out-of-control use of antibiotics eliminates drug-susceptible species that would naturally limit the expansion of resistant species. In addition, the ability of many microbial species to grow as a biofilm has further complicated the treatment of infections with conventional antibiotics. A number of corrective measures are currently being explored to reverse or slow antibiotic resistance evolution, Among which one of the most promising solutions is the development of polymer-based antimicrobial compounds. In this Special Issue, different polymer systems able to prevent or treat biofilm formation, including cationic polymers, antibacterial peptide-mimetic polymers, polymers or composites able to load and release bioactive molecules, and antifouling polymers able to repel microbes by physical or chemical mechanisms are reported. Their applications in the design and fabrication of medical devices, in food packaging, and as drug carriers is investigated.

Keywords

cationic polymers --- imidization --- quaternization --- antimicrobial properties --- hemolytic activity --- coatings from nanoparticles --- biocompatible polymer --- antimicrobial polymer --- dynamic light scattering --- coatings wettability --- microbicidal coatings --- bacteria viability --- bactericidal coatings --- Escherichia coli --- Staphylococcus aureus --- Acinetobacter baumannii --- multidrug-resistant --- antimicrobial peptide --- antibiofilm activity --- physiological salt --- biofilm --- anti-biofilm surface --- surface functionalization --- ?-chymotrypsin --- proteinase --- antimicrobial polymers --- quaternary ammonium --- 2-hydroxyethyl methacrylate --- thermal stability --- polymers --- antibacterial --- drug delivery --- periodontitis --- periodontal biofilms --- polyamide 11 --- antibacterial --- polymeric biocide --- thermal stability --- biofilm --- antifouling --- copper paint --- additives --- biofilm --- lipopeptides --- biofilm --- persister cells --- ocular infections --- biofilm on contact lenses --- cuprous oxide nanoparticles --- linear low-density polyethylene --- composites --- adhesives --- antibacterial activity --- water disinfection --- active packaging --- antimicrobial peptides --- food shelf-life --- foodborne pathogens --- plastic materials --- antibacterial peptides --- halictine --- circular dichroism --- fluorescence --- infrared spectroscopy --- segmented polyurethanes --- polyethylene glycol --- microbial biofilm --- antifouling materials --- medical device-related infections --- wound dressings --- additive manufacturing --- antibacterial polymers --- biocompatible systems --- drug delivery systems --- 3D printing --- amorphous materials --- ordered mesoporous silica --- sol-gel preparation --- drug carrier --- multifunctional hybrid systems --- olive mill wastewater --- antibacterial properties --- layered double hydroxides --- bionanocomposites --- acrylates --- antibacterial activity --- copolymerization --- polymeric films --- polymerizable quaternary ammonium salts --- quaternary ammonium salts --- UV-induced polymerization --- antimicrobial resistance --- antimicrobial polymers --- ESKAPE pathogens --- anti-biofilm surfaces --- polymeric surfaces --- biofilm methods --- biofilm analysis --- biofilm devices --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search