Search results: Found 2

Listing 1 - 2 of 2
Sort by
Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions

Author:
ISBN: 9783038979920 9783038979937 Year: Pages: 212 DOI: 10.3390/books978-3-03897-993-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Oral health is general health. If the oral cavity is kept healthy, the whole body is always healthy. Bacteria in the oral cavity do not stay in the oral cavity, but rather they travel throughout the body and can induce various diseases. Periodontal pathogens are involved in tooth loss. The number of remaining teeth decreases with age. People with more residual teeth can bite food well and live longer with lower incidence of dementia. There are many viruses in the oral cavity that also cause various diseases. Bacteria and viruses induce and aggravate inflammation, and therefore should be removed from the oral cavity. In the natural world, there are are many as yet undiscovered antiviral, antibacterial and anti-inflammatory substances. These natural substances, as well as chemically modified derivatives, help our oral health and lead us to more fulfilling, high quality lives. This Special Issue, entitled “Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions”, was written by specialists from a diverse variety of fields. It serves to provide readers with up-to-date information on incidence rates in each age group, etiology and treatment of stomatitis, and to investigate the application of such treatments as oral care and cosmetic materials.

Keywords

metabolomics --- oral cell --- benzaldehyde --- eugenol --- inflammation --- cytotoxicity --- stomatitis --- recurrent aphthous stomatitis --- oral lichen planus --- CCN2 --- glucocorticoids --- alkaloids --- anti-human immunodeficiency virus (HIV) --- antiviral --- natural product --- human virus --- inflammatory disease --- stomatitis --- periodontitis --- anti-osteoclast activity --- cepharanthin --- herbal medicine --- natural product --- arachidonic acid cascade --- allergic rhinitis --- mice --- quercetin --- thioredoxin --- nasal epithelial cell --- production --- increase --- in vitro --- in vivo --- nutritionally variant streptococci --- antimicrobial susceptibilities --- oral microbiota --- infective endocarditis --- kampo formula --- traditional Japanese herbal medicine --- stomatitis --- mucositis --- Hangeshashinto --- polyphenol --- chromone --- lignin-carbohydrate complex --- alkaline extract --- Kampo medicine --- glucosyltransferase --- angiotensin II blocker --- QSAR analysis --- oral diseases --- dental application --- Chinese herbal remedies --- stomatitis --- periodontitis --- Kampo --- traditional medicine --- Jixueteng --- Juzentaihoto --- technical terms --- gargle --- tongue diagnosis --- mastic --- pathogenic factors --- quantitative structure-activity relationship --- machine learning --- random forest --- natural products --- tumour-specificity --- Kampo medicine --- constituent plant extract --- stomatitis --- oral inflammation --- quantitative structure-activity relationship (QSAR) analysis --- metabolomics

Bio-Based Polymers for Engineered Green Materials

Authors: ---
ISBN: 9783039289257 / 9783039289264 Year: Pages: 568 DOI: 10.3390/books978-3-03928-926-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

With daily signals, Nature is communicating us that its unconscious wicked exploitation is no more sustainable. Our socio-economic system focuses on production increasing without considering the consequences. We are intoxicating ourselves on a daily bases just to allow the system to perpetuate itself. The time to switch into more natural solutions is come and the scientific community is ready to offer more natural product with comparable performance then the market products we are used to deal with. This book collects a broad set of scientific examples in which research groups from all over the world, aim to replace fossil fuel-based solutions with biomass derived materials. In here, some of the most innovative developments in the field of bio-materials are reported considering topics which goes from biomass valorization to the synthesis of high preforming bio-based materials.

Keywords

thermoplastic starch --- corn starch --- chitosan --- crosslinked microparticles --- lignin-containing cellulose nanofibrils --- poly(lactic acid) and composite films --- lignin content --- compatibility --- adsorption --- phenanthrene --- pyrene --- benzoyl cellulose --- stearoyl cellulose --- silkworm cocoons --- dense structure --- porosity --- robust fiber network --- mechanical properties --- photodegradation --- liquid natural rubber --- UV light --- TiO2 anatase --- latex state --- wood modification --- alkali lignin --- water resistance --- dimensional stability --- heat treatment --- polymeric composites --- antifouling --- metal binding --- iron chelation --- polydopamine coating --- free-radical polymerization --- galactoglucomannan --- lignin --- lignin-carbohydrate complex --- ultrafiltration --- precipitation --- hydrogel --- recycling --- thermal degradation --- mechanical degradation --- polylactic acid --- Bioflex --- Solanyl --- PHBV --- poly(lactic acid) --- pulp fibers --- biocomposite --- emulsion-solvent evaporation method --- films --- mechanical properties --- PHA --- mixed microbial cultures --- bioplastics --- feast-famine --- cost --- Peptone --- Microbial nutrient --- Anti-bacterial silver nanoparticle --- Escherichia coli --- Staphylococcus aureus --- tannin --- hemicellulose --- waste biomass --- HSQC-NMR --- pyrolysis mechanism --- hydrotropic treatment --- metal chloride --- delignification --- enzymatic saccharification --- lignocellulosic nanofibrils --- microencapsulated phase change material (MPCM) --- polylactic acid (PLA) --- toughening --- endothermic effect --- kenaf fiber --- hybrid composites --- bio-based --- film --- mechanical properties --- polysaccharides --- resource recovery --- solution casting --- orange waste --- nanocelluloses --- cellulose nanofibers --- cellulose nanocrystals --- bacterial cellulose --- cement --- fiber-cement --- Hatscheck process --- bio-inspired interfaces --- mechanical properties --- thermal stability --- sensitivity --- electrospinning --- tissue engineering --- paper-based scaffolds --- osteoblast proliferation --- polycaprolactone --- biopolymers --- nanoclays --- nanobiocomposites --- extrusion-compounding --- polyhydroxyalkanoates --- thermal properties --- mechanical properties --- differential scanning calorimetry --- nuclear magnetic resonance --- X-ray diffraction --- transparent wood --- chemical composition --- H2O2 bleaching treatment --- physicochemical properties --- cellulose --- electrical resistance --- copper coating --- electroless deposition --- humidity sensor --- strain sensor --- lyocell fiber --- asphalt rubber --- bio-asphalt --- mixing sequence --- workability --- storage stability --- tung oil --- unsaturated polyester resins --- thermosetting polymers --- structure–property relationship --- structural plastics --- ONP fibers --- silanization --- composites --- mechanical properties --- Artemisia vulgaris --- microcellulose fiber --- nanocellulose fibers --- natural fibers --- Bio-based foams --- wastewater treatments --- cationic dyes --- anionic surfactants --- pollutant adsorbents --- tannin polymer --- tannin-furanic foam --- biopolymers --- nanoclays --- bio-nanocomposites --- extrusion-compounding --- polyhydroxyalkanoates --- thermal properties --- microstructure --- volatiles --- autoxidation --- thermal gravimetric analysis --- scanning electron microscope --- headspace solid phase microextraction --- alginate sponge --- two-step lyophilization --- methylene blue --- adsorption capacity --- biomass resources --- hybrid nonisocyanate polyurethane --- solvent- and catalyst-free --- dimer acid --- melt condensation --- bacterial cellulose --- surface modification --- TEMPO oxidation --- one-pot synthesis --- immobilized TEMPO --- physical property --- skincare --- cellulose --- graphene oxide --- ionic liquid --- membrane --- transport properties --- heavy metals --- porous structure --- SAXS --- WAXS --- cellulose --- wood --- lignocellulose --- ionic liquid --- imidazolium --- fractionation --- dissolution --- GC-MS --- kaempferol --- knotwood --- larixol --- taxifolin --- vibrational spectroscopy --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (1)

english (1)


Year
From To Submit

2020 (1)

2019 (1)