Search results: Found 4

Listing 1 - 4 of 4
Sort by
Kinetic Theory and Swarming Tools to Modeling Complex Systems—Symmetry problems in the Science of Living Systems

Author:
ISBN: 9783039288793 / 9783039288809 Year: Pages: 118 DOI: 10.3390/books978-3-03928-880-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Economics
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This MPDI book comprises a number of selected contributions to a Special Issue devoted to the modeling and simulation of living systems based on developments in kinetic mathematical tools. The focus is on a fascinating research field which cannot be tackled by the approach of the so-called hard sciences—specifically mathematics—without the invention of new methods in view of a new mathematical theory. The contents proposed by eight contributions witness the growing interest of scientists this field. The first contribution is an editorial paper which presents the motivations for studying the mathematics and physics of living systems within the framework an interdisciplinary approach, where mathematics and physics interact with specific fields of the class of systems object of modeling and simulations. The different contributions refer to economy, collective learning, cell motion, vehicular traffic, crowd dynamics, and social swarms. The key problem towards modeling consists in capturing the complexity features of living systems. All articles refer to large systems of interaction living entities and follow, towards modeling, a common rationale which consists firstly in representing the system by a probability distribution over the microscopic state of the said entities, secondly, in deriving a general mathematical structure deemed to provide the conceptual basis for the derivation of models and, finally, in implementing the said structure by models of interactions at the microscopic scale. Therefore, the modeling approach transfers the dynamics at the low scale to collective behaviors. Interactions are modeled by theoretical tools of stochastic game theory. Overall, the interested reader will find, in the contents, a forward look comprising various research perspectives and issues, followed by hints on to tackle these.

Nanoscience and Nanotechnology, Proceedings of the INFN-LNF 2018 Conference

Author:
ISBN: 9783039219681 9783039219698 Year: Pages: 90 DOI: 10.3390/books978-3-03921-969-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2020-04-07 23:20:03
License:

Loading...
Export citation

Choose an application

Abstract

The results presented in this volume highlight some of the most recent advances in nanoscience and nanotechnology studies, from both the physical and chemical point of view, with an eye also to possible engineering applications. These studies demonstrate directly how effective, and at the same time stimulating is implementing the “cross-fertilization” procedure. Indeed, multidisciplinary research allows one to catch more easily the analogies inherent different areas of science, as well as to take advantage and optimize different methods and techniques, often borrowed from other research areas.In the present Special Issue, we included six published papers. The latter contributions, on the one hand, are developed at the theory level and, on the other hand, show experimental results on the realization and experimental characterization of nanostructured systems, suitable for yielding progress towards the realization of systems and devices, that can ultimately lead to industrial applications. The results show that recent scientific research advances in these areas may provide important steps in the direction of fostering innovation and technological development.

Intermittency and Self-Organisation in Turbulence and Statistical Mechanics

Author:
ISBN: 9783039211081 9783039211098 Year: Pages: 298 DOI: 10.3390/books978-3-03921-109-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

There is overwhelming evidence, from laboratory experiments, observations, and computational studies, that coherent structures can cause intermittent transport, dramatically enhancing transport. A proper description of this intermittent phenomenon, however, is extremely difficult, requiring a new non-perturbative theory, such as statistical description. Furthermore, multi-scale interactions are responsible for inevitably complex dynamics in strongly non-equilibrium systems, a proper understanding of which remains a main challenge in classical physics. As a remarkable consequence of multi-scale interaction, a quasi-equilibrium state (the so-called self-organisation) can however be maintained. This special issue aims to present different theories of statistical mechanics to understand this challenging multiscale problem in turbulence. The 14 contributions to this Special issue focus on the various aspects of intermittency, coherent structures, self-organisation, bifurcation and nonlocality. Given the ubiquity of turbulence, the contributions cover a broad range of systems covering laboratory fluids (channel flow, the Von Kármán flow), plasmas (magnetic fusion), laser cavity, wind turbine, air flow around a high-speed train, solar wind and industrial application.

Gas Flows in Microsystems

Authors: ---
ISBN: 9783039215423 9783039215430 Year: Pages: 220 DOI: 10.3390/books978-3-03921-543-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The last two decades have witnessed a rapid development of microelectromechanical systems (MEMS) involving gas microflows in various technical fields. Gas microflows can, for example, be observed in microheat exchangers designed for chemical applications or for cooling of electronic components, in fluidic microactuators developed for active flow control purposes, in micronozzles used for the micropropulsion of nano and picosats, in microgas chromatographs, analyzers or separators, in vacuum generators and in Knudsen micropumps, as well as in some organs-on-a-chip, such as artificial lungs. These flows are rarefied due to the small MEMS dimensions, and the rarefaction can be increased by low-pressure conditions. The flows relate to the slip flow, transition or free molecular regimes and can involve monatomic or polyatomic gases and gas mixtures. Hydrodynamics and heat and mass transfer are strongly impacted by rarefaction effects, and temperature-driven microflows offer new opportunities for designing original MEMS for gas pumping or separation. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel theoretical and numerical models or data, as well as on new experimental results and technics, for improving knowledge on heat and mass transfer in gas microflows. Papers dealing with the development of original gas MEMS are also welcome.

Keywords

pressure drop --- microchannels --- heat sinks --- slip flow --- electronic cooling --- Knudsen pump --- thermally induced flow --- gas mixtures --- direct simulation Monte Carlo (DSMC) --- microfluidic --- rarefied gas flows --- micro-scale flows --- Knudsen layer --- computational fluid dynamics (CFD) --- OpenFOAM --- Micro-Electro-Mechanical Systems (MEMS) --- Nano-Electro-Mechanical Systems (NEMS) --- backward facing step --- gaseous rarefaction effects --- fractal surface topography --- modified Reynolds equation --- aerodynamic effect --- bearing characteristics --- underexpansion --- Fanno flow --- flow choking --- compressibility --- binary gas mixing --- micro-mixer --- DSMC --- splitter --- mixing length --- control mixture composition --- preconcentrator --- microfluidics --- miniaturized gas chromatograph --- BTEX --- PID detector --- ultraviolet light-emitting diode (UV LED) --- spectrophotometry --- UV absorption --- gas sensors --- Benzene, toluene, ethylbenzene and xylene (BTEX) --- toluene --- hollow core waveguides --- capillary tubes --- gas mixing --- pulsed flow --- modular micromixer --- multi-stage micromixer --- modelling --- photoionization detector --- microfluidics --- microfabrication --- volatile organic compound (VOC) detection --- toluene --- supersonic microjets --- Pitot tube --- Knudsen pump --- thermal transpiration --- vacuum micropump --- rarefied gas flow --- kinetic theory --- microfabrication --- photolithography --- microfluidics --- resonant micro-electromechanical-systems (MEMS) --- micro-mirrors --- out-of-plane comb actuation --- fluid damping --- analytical solution --- FE analysis --- miniaturization --- gas flows in micro scale --- measurement and control --- integrated micro sensors --- advanced measurement technologies --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by-nc-nd (4)


Language

english (3)

eng (1)


Year
From To Submit

2020 (2)

2019 (2)