Search results: Found 10

Listing 1 - 10 of 10
Sort by
Quantification of the Downstream Impact of Extratropical Transition for Typhoon Jangmi and Other Case Studies

Author:
Book Series: Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie ISSN: 1795619 ISBN: 9783866447769 Year: Volume: 56 Pages: VII, 334 p. DOI: 10.5445/KSP/1000024940 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

The impact of extratropical transition on the midlatitude flow is quantified based on potential vorticity inversion. The detailed study of Typhoon Jangmi (2008) reveals the diabatically enhanced net transport of low-PV air to the tropopause as the key physical process determining the direct impact of ET. Relocation experiments and further case studies show the crucial role of the relative position of the TC and the midlatitude flow for the downstream impact of ET and the reduced predictability.

Linguistic Influences on Mathematical Cognition

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452002 Year: Pages: 173 DOI: 10.3389/978-2-88945-200-2 Language: English
Publisher: Frontiers Media SA
Subject: Psychology --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

For many years, an abstract, amodal semantic magnitude representation, largely independent of verbal linguistic representations, has been viewed as the core numerical or mathematical representation This assumption has been substantially challenged in recent years. Linguistic properties affect not only verbal representations of numbers, but also numerical magnitude representation, spatial magnitude representations, calculation, parity representation, place-value representation and even early number acquisition. Thus, we postulate that numerical and arithmetic processing are not fully independent of linguistic processing. This is not to say, that in patients, magnitude processing cannot function independently of linguistic processing we just suppose, these functions are connected in the functioning brain. So far, much research about linguistic influences on numerical cognition has simply demonstrated that language influences number without investigating the level at which a particular language influence operates. After an overview, we present new findings on language influences on seven language levels: - Conceptual: Conceptual properties of language- Syntactic: The grammatical structure of languages beyond the word level influences- Semantic: The semantic meaning or existence of words- Lexical: The lexical composition of words, in particular number words- Visuo-spatial-orthographic: Orthographic properties, such as the writing/reading direction of a language- Phonological: Phonological/phonetic properties of languages- Other language-related skills: Verbal working memory and other cognitive skills related to language representationsWe hope that this book provides a new and structured overview on the exciting influences of linguistic processing on numerical cognition at almost all levels of language processing.

Microwave Imaging and Electromagnetic Inverse Scattering Problems

Authors: ---
ISBN: 9783039219506 / 9783039219513 Year: Pages: 170 DOI: 10.3390/books978-3-03921-951-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Microwave imaging techniques allow for the development of systems that are able to inspect, identify, and characterize in a noninvasive fashion under different scenarios, ranging from biomedical to subsurface diagnostics as well as from surveillance and security applications to nondestructive evaluation. Such great opportunities, though, are actually severely limited by difficulties arising from the solution of the underlying inverse scattering problem. As a result, ongoing research efforts in this area are devoted to developing inversion strategies and experimental apparatus so that they are as reliable and accurate as possible with respect to reconstruction capabilities and resolution performance, respectively. The intent of this Special Issue is to present the experiences of leading scientists in the electromagnetic inverse scattering community, as well as to serve as an assessment tool for people who are new to the area of microwave imaging and electromagnetic inverse scattering problems.

Novel Methods and Applications for Mineral Exploration

Author:
ISBN: 9783039289431 / 9783039289448 Year: Pages: 264 DOI: 10.3390/books978-3-03928-944-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geology --- Earth Sciences
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This special volume offers a snapshot of the latest developments in mineral exploration, in particular, geophysical, geochemical, and computational methods. It reflects the cutting-edge applications of geophysics and geochemistry, as well as novel technologies, such as in artificial intelligence and hyperspectral exploration, methods that have profoundly changed how exploration is conducted. This special volume is a representation of these cutting-edge and pioneering methods to consider and conduct exploration, and should serve both as a valuable compendium of the most innovative exploration methodologies available and as a foreshadowing of the form of future exploration. As such, this volume is of significant importance and would be useful to any exploration geologist and company

Advancing Earth Surface Representation via Enhanced Use of Earth Observations in Monitoring and Forecasting Applications

Authors: --- --- --- --- et al.
ISBN: 9783039210640 9783039210657 Year: Pages: 262 DOI: 10.3390/books978-3-03921-065-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The representation of the Earth's surface in global monitoring and forecasting applications is moving towards capturing more of the relevant processes, while maintaining elevated computational efficiency and therefore a moderate complexity. These schemes are developed and continuously improved thanks to well instrumented field-sites that can observe coupled processes occurring at the surface–atmosphere interface (e.g., forest, grassland, cropland areas and diverse climate zones). Approaching global kilometer-scale resolutions, in situ observations alone cannot fulfil the modelling needs, and the use of satellite observation becomes essential to guide modelling innovation and to calibrate and validate new parameterization schemes that can support data assimilation applications. In this book, we review some of the recent contributions, highlighting how satellite data are used to inform Earth surface model development (vegetation state and seasonality, soil moisture conditions, surface temperature and turbulent fluxes, land-use change detection, agricultural indicators and irrigation) when moving towards global km-scale resolutions.

Crystal Growth of Multifunctional Borates and Related Materials

Author:
ISBN: 9783038978381 9783038978398 Year: Pages: 116 DOI: 10.3390/books978-3-03897-839-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-05-09 17:16:14
License:

Loading...
Export citation

Choose an application

Abstract

Borate crystals are attractive for different technological applications because of their favorable physical and chemical properties like stability and high transparency, both high thermal and non-linear optical coefficients, making them ideal active media for highly efficient solid state lasers. In this Special Issue, different aspects of multifunctional borate crystals are discussed, including ortho- and oxyorthoborates and compounds with condensed anions, as well as their nonlinear optical and laser properties and piezoelectric characteristics. For this reason, complex investigations of the phase relationships in multi-component borate melts, the study of crystal growth conditions of novel high-temperature borates, and the development of the “crystallization conditions, composition, structure, and properties” concept will provide a scientific basis for growth technologies of high performance electronic and optical devices and components with a variety of industrial, medical and many other applications. In the meantime, these relationships can help to estimate the affinity of synthetic borate materials with their natural prototypes and structural analogues.

Remote Sensing of Above Ground Biomass

Authors: ---
ISBN: 9783039212095 9783039212101 Year: Pages: 264 DOI: 10.3390/books978-3-03921-210-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Above ground biomass has been listed by the Intergovernmental Panel on Climate Change as one of the five most prominent, visible, and dynamic terrestrial carbon pools. The increased awareness of the impacts of climate change has seen a burgeoning need to consistently assess carbon stocks to combat carbon sequestration. An accurate estimation of carbon stocks and an understanding of the carbon sources and sinks can aid the improvement and accuracy of carbon flux models, an important pre-requisite of climate change impact projections. Based on 15 research topics, this book demonstrates the role of remote sensing in quantifying above ground biomass (forest, grass, woodlands) across varying spatial and temporal scales. The innovative application areas of the book include algorithm development and implementation, accuracy assessment, scaling issues (local–regional–global biomass mapping), and the integration of microwaves (i.e. LiDAR), along with optical sensors, forest biomass mapping, rangeland productivity and abundance (grass biomass, density, cover), bush encroachment biomass, and seasonal and long-term biomass monitoring.

Keywords

multi-angle remote sensing --- forest structure information --- vegetation indices --- forest biomass --- Bidirectional Reflectance Distribution Factor --- biomass --- yield --- AquaCrop model --- spectral index --- particle swarm optimization --- winter wheat --- TerraSAR-X --- Landsat --- pasture biomass --- Wambiana grazing trial --- foliage projective cover --- fractional vegetation cover --- ALOS2 --- mixed forest --- biomass --- lidar --- NDVI --- grass biomass --- SPLSR --- vegetation indices --- estimation accuracy --- pasture biomass --- ground-based remote sensing --- ultrasonic sensor --- field spectrometry --- sensor fusion --- short grass --- alpine grassland conservation --- anthropogenic disturbance --- ecological policies --- climate change --- grazing exclusion --- grazing management --- regional sustainability --- rice --- biomass --- dry matter index --- chlorophyll index --- CIRed-edge --- NDLMA --- forest above ground biomass (AGB) --- random forest --- mapping --- alpine meadow grassland --- above-ground biomass --- inversion model --- error analysis --- applicability evaluation --- Land Surface Phenology --- wetlands --- above ground biomass --- NDVI --- MODIS time series --- food security --- Sahel --- Niger --- rangeland productivity --- livestock --- MODIS --- NDVI --- aboveground biomass --- Atriplex nummularia --- carbon mitigation --- carbon inventory --- forage crops --- remote sensing --- vegetation index --- stem volume --- dry biomass --- conifer --- broadleaves --- light detection and ranging (LiDAR) --- regression analysis --- correlation coefficient --- n/a

Miniaturized Transistors

Authors: ---
ISBN: 9783039210107 9783039210114 Year: Pages: 202 DOI: 10.3390/books978-3-03921-011-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.

Keywords

flux calculation --- etching simulation --- process simulation --- topography simulation --- CMOS --- field-effect transistor --- ferroelectrics --- MOS devices --- negative-capacitance --- piezoelectrics --- power consumption --- thin-film transistors (TFTs) --- compact model --- surface potential --- technology computer-aided design (TCAD) --- metal oxide semiconductor field effect transistor (MOSFET) --- topography simulation --- metal gate stack --- level set --- high-k --- fin field effect transistor (FinFET) --- line edge roughness --- metal gate granularity --- nanowire --- non-equilibrium Green’s function --- random discrete dopants --- SiGe --- variability --- band-to-band tunneling (BTBT) --- electrostatic discharge (ESD) --- tunnel field-effect transistor (TFET) --- Silicon-Germanium source/drain (SiGe S/D) --- technology computer aided design (TCAD) --- bulk NMOS devices --- radiation hardened by design (RHBD) --- total ionizing dose (TID) --- Sentaurus TCAD --- layout --- two-dimensional material --- field effect transistor --- indium selenide --- phonon scattering --- mobility --- high-? dielectric --- low-frequency noise --- silicon-on-insulator --- MOSFET --- inversion channel --- buried channel --- subthreshold bias range --- low voltage --- low energy --- theoretical model --- process simulation --- device simulation --- compact models --- process variations --- systematic variations --- statistical variations --- FinFETs --- nanowires --- nanosheets --- semi-floating gate --- synaptic transistor --- neuromorphic system --- spike-timing-dependent plasticity (STDP) --- highly miniaturized transistor structure --- low power consumption --- drain engineered --- tunnel field effect transistor (TFET) --- polarization --- ambipolar --- subthreshold --- ON-state --- doping incorporation --- plasma-aided molecular beam epitaxy (MBE) --- segregation --- silicon nanowire --- n/a

Advances in Quantitative Remote Sensing in China – In Memory of Prof. Xiaowen Li

Authors: --- ---
ISBN: 9783038972709 Year: Volume: 1 Pages: 404 DOI: 10.3390/books978-3-03897-271-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

evapotranspiration --- Northeast China --- MS–PT algorithm --- spatial-temporal variations --- controlling factors --- potential evapotranspiration --- vegetation remote sensing --- reflectance model --- spectra --- leaf --- copper --- PROSPECT --- leaf area density --- terrestrial LiDAR --- tree canopy --- vertical structure --- voxel --- spatial representativeness --- heterogeneity --- validation --- land-surface temperature products (LSTs) --- observations --- HiWATER --- remote sensing --- spatiotemporal representative --- cost-efficient, sampling design --- heterogeneity --- validation --- FY-3C/MERSI --- GLASS --- Land surface temperature --- Land surface emissivity --- GPP --- SIF --- MuSyQ-GPP algorithm --- BEPS --- vegetation phenology --- Tibetan Plateau --- MODIS --- NDVI --- start of growing season (SOS) --- end of growing season (EOS) --- GLASS LAI time series --- forest disturbance --- disturbance index --- latent heat --- machine learning algorithms --- plant functional type --- high-resolution freeze/thaw --- AMSR2 --- MODIS --- LAI --- ZY-3 MUX --- GF-1 WFV --- HJ-1 CCD --- maize --- PROSPECT-5B+SAILH (PROSAIL) model --- spatial heterogeneity --- variability --- evapotranspiration --- land surface variables --- probability density function --- HiWATER --- spectral --- albedometer --- interference filter --- photoelectric detector --- validation --- land surface albedo --- multi-scale validation --- rugged terrain --- MRT-based model --- MCD43A3 C6 --- precipitation --- statistics methods --- China --- Tibetan Plateau --- South China’s --- drought --- SPI --- TMI data --- crop-growing regions --- downward shortwave radiation --- machine learning --- gradient boosting regression tree --- AVHRR --- CMA --- BRDF --- aerosol --- MODIS --- sunphotometer --- arid/semiarid --- solar-induced chlorophyll fluorescence --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- SCOPE --- Fraunhofer Line Discrimination (FLD) --- gross primary productivity (GPP) --- longwave upwelling radiation (LWUP) --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- surface radiation budget --- hybrid method --- remote sensing --- leaf age --- leaf spectral properties --- leaf area index --- Cunninghamia --- Chinese fir --- canopy reflectance --- NIR --- EVI2 --- geometric optical radiative transfer (GORT) model --- land surface albedo --- snow-free albedo --- rugged terrain --- topographic effects --- black-sky albedo (BSA) --- GPP --- NPP --- MODIS --- validation --- phenology --- RADARSAT-2 --- rice --- Synthetic Aperture Radar (SAR) --- decision tree --- forest canopy height --- aboveground biomass --- ICESat GLAS --- Landsat --- random forest model --- anisotropic reflectance --- BRDF --- rugged terrain --- solo slope --- composite slope --- surface solar irradiance --- geostationary satellite --- polar orbiting satellite --- LUT method --- SURFRAD --- downward shortwave radiation --- daily average value --- Antarctica --- sinusoidal method --- cloud fraction --- interpolation --- boreal forest --- GPP --- spatiotemporal distribution and variation --- meteorological factors --- phenological parameters --- multisource data fusion --- aerosol retrieval --- urban scale --- vegetation dust-retention --- multiple ecological factors --- geographical detector model --- snow cover --- passive microwave --- FY-3C/MWRI --- algorithmic assessment --- China --- land surface temperature --- satellite observations --- flux measurements --- latitudinal pattern --- land cover change --- fractional vegetation cover (FVC) --- multi-data set --- northern China --- spatio-temporal --- inter-annual variation --- uncertainty --- standard error of the mean --- downscaling --- GPP --- spatial heterogeneity --- remote sensing --- subpixel information --- LiDAR --- point cloud --- leaf --- gap fraction --- 3D reconstruction --- biodiversity --- remote sensing --- species richness --- metric comparison --- metric integration --- leaf area index --- MODIS products --- Landsat --- high resolution --- homogeneous and pure pixel filter --- pixel unmixing --- vertical vegetation stratification --- gross primary production (GPP) --- light use efficiency --- dense forest --- MODIS --- VPM --- temperature profiles --- humidity profiles --- n/a --- geometric-optical model --- thermal radiation directionality --- quantitative remote sensing inversion --- scale effects --- comprehensive field experiment

Advances in Quantitative Remote Sensing in China – In Memory of Prof. Xiaowen Li

Authors: --- ---
ISBN: 9783038972761 Year: Volume: 2 Pages: 404 DOI: 10.3390/books978-3-03897-277-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

evapotranspiration --- Northeast China --- MS–PT algorithm --- spatial-temporal variations --- controlling factors --- potential evapotranspiration --- vegetation remote sensing --- reflectance model --- spectra --- leaf --- copper --- PROSPECT --- leaf area density --- terrestrial LiDAR --- tree canopy --- vertical structure --- voxel --- spatial representativeness --- heterogeneity --- validation --- land-surface temperature products (LSTs) --- observations --- HiWATER --- remote sensing --- spatiotemporal representative --- cost-efficient, sampling design --- heterogeneity --- validation --- FY-3C/MERSI --- GLASS --- Land surface temperature --- Land surface emissivity --- GPP --- SIF --- MuSyQ-GPP algorithm --- BEPS --- vegetation phenology --- Tibetan Plateau --- MODIS --- NDVI --- start of growing season (SOS) --- end of growing season (EOS) --- GLASS LAI time series --- forest disturbance --- disturbance index --- latent heat --- machine learning algorithms --- plant functional type --- high-resolution freeze/thaw --- AMSR2 --- MODIS --- LAI --- ZY-3 MUX --- GF-1 WFV --- HJ-1 CCD --- maize --- PROSPECT-5B+SAILH (PROSAIL) model --- spatial heterogeneity --- variability --- evapotranspiration --- land surface variables --- probability density function --- HiWATER --- spectral --- albedometer --- interference filter --- photoelectric detector --- validation --- land surface albedo --- multi-scale validation --- rugged terrain --- MRT-based model --- MCD43A3 C6 --- precipitation --- statistics methods --- China --- Tibetan Plateau --- South China’s --- drought --- SPI --- TMI data --- crop-growing regions --- downward shortwave radiation --- machine learning --- gradient boosting regression tree --- AVHRR --- CMA --- BRDF --- aerosol --- MODIS --- sunphotometer --- arid/semiarid --- solar-induced chlorophyll fluorescence --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- SCOPE --- Fraunhofer Line Discrimination (FLD) --- gross primary productivity (GPP) --- longwave upwelling radiation (LWUP) --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- surface radiation budget --- hybrid method --- remote sensing --- leaf age --- leaf spectral properties --- leaf area index --- Cunninghamia --- Chinese fir --- canopy reflectance --- NIR --- EVI2 --- geometric optical radiative transfer (GORT) model --- land surface albedo --- snow-free albedo --- rugged terrain --- topographic effects --- black-sky albedo (BSA) --- GPP --- NPP --- MODIS --- validation --- phenology --- RADARSAT-2 --- rice --- Synthetic Aperture Radar (SAR) --- decision tree --- forest canopy height --- aboveground biomass --- ICESat GLAS --- Landsat --- random forest model --- anisotropic reflectance --- BRDF --- rugged terrain --- solo slope --- composite slope --- surface solar irradiance --- geostationary satellite --- polar orbiting satellite --- LUT method --- SURFRAD --- downward shortwave radiation --- daily average value --- Antarctica --- sinusoidal method --- cloud fraction --- interpolation --- boreal forest --- GPP --- spatiotemporal distribution and variation --- meteorological factors --- phenological parameters --- multisource data fusion --- aerosol retrieval --- urban scale --- vegetation dust-retention --- multiple ecological factors --- geographical detector model --- snow cover --- passive microwave --- FY-3C/MWRI --- algorithmic assessment --- China --- land surface temperature --- satellite observations --- flux measurements --- latitudinal pattern --- land cover change --- fractional vegetation cover (FVC) --- multi-data set --- northern China --- spatio-temporal --- inter-annual variation --- uncertainty --- standard error of the mean --- downscaling --- GPP --- spatial heterogeneity --- remote sensing --- subpixel information --- LiDAR --- point cloud --- leaf --- gap fraction --- 3D reconstruction --- biodiversity --- remote sensing --- species richness --- metric comparison --- metric integration --- leaf area index --- MODIS products --- Landsat --- high resolution --- homogeneous and pure pixel filter --- pixel unmixing --- vertical vegetation stratification --- gross primary production (GPP) --- light use efficiency --- dense forest --- MODIS --- VPM --- temperature profiles --- humidity profiles --- n/a --- geometric-optical model --- thermal radiation directionality --- quantitative remote sensing inversion --- scale effects --- comprehensive field experiment

Listing 1 - 10 of 10
Sort by
Narrow your search