Search results: Found 5

Listing 1 - 5 of 5
Sort by
Information Decomposition of Target Effects from Multi-Source Interactions

Authors: --- --- ---
ISBN: 9783038970156 9783038970163 Year: Pages: 336 DOI: 10.3390/books978-3-03897-016-3 Language: englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Physics (General)
Added to DOAB on : 2018-09-04 13:22:10
License:

Loading...
Export citation

Choose an application

Abstract

Using Shannon information theory to analyse the contributions from two source variables to a target, for example, we can measure the information held by one source about the target, the information held by the other source about the target, and the information held by those sources together about the target. Intuitively, however, there is strong desire to measure further notions of how this directed information interaction may be decomposed, e.g., how much information the two source variables hold redundantly about the target, how much each source variable holds uniquely, and how much information can only be discerned by synergistically examining the two sources together.The absence of measures for such decompositions into redundant, unique and synergistic information is arguably the most fundamental missing piece in classical information theory. Triggered by the formulation of the Partial Information Decomposition framework by Williams and Beer in 2010, the past few years have witnessed a concentration of work by the community in proposing, contrasting, and investigating new measures to capture these notions of information decomposition.This Special Issue seeks to bring together these efforts, to capture a snapshot of the current research, as well as to provide impetus for and focused scrutiny on newer work, present progress to the wider community and attract further research. Our contributions present: several new approaches for measures of such decompotions; commentary on properties, interpretations and limitations of such approaches; and applications to empirical data (in particular to neural data).

Entropy in Dynamic Systems

Authors: ---
ISBN: 9783039216161 9783039216178 Year: Pages: 172 DOI: 10.3390/books978-3-03921-617-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

In order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed.

Entropy Measures for Data Analysis: Theory, Algorithms and Applications

Author:
ISBN: 9783039280322 9783039280339 Year: Pages: 260 DOI: 10.3390/books978-3-03928-033-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2020-01-07 09:21:22
License:

Loading...
Export citation

Choose an application

Abstract

Entropies and entropy-like quantities play an increasing role in modern non-linear data analysis. Fields that benefit from this application range from biosignal analysis to econophysics and engineering. This issue is a collection of papers touching on different aspects of entropy measures in data analysis, as well as theoretical and computational analyses. The relevant topics include the difficulty to achieve adequate application of entropy measures and the acceptable parameter choices for those entropy measures, entropy-based coupling, and similarity analysis, along with the utilization of entropy measures as features in automatic learning and classification. Various real data applications are given.

Keywords

experiment of design --- empirical mode decomposition --- signal analysis --- similarity indices --- synchronization analysis --- auditory attention --- entropy measure --- linear discriminant analysis (LDA) --- support vector machine (SVM) --- auditory attention classifier --- electroencephalography (EEG) --- vague entropy --- distance induced vague entropy --- distance --- complex fuzzy set --- complex vague soft set --- entropy, entropy visualization --- entropy balance equation --- Shannon-type relations --- multivariate analysis --- machine learning evaluation --- data transformation --- sample entropy --- treadmill walking --- center of pressure displacement --- dual-tasking --- analog circuit --- fault diagnosis --- cross wavelet transform --- Tsallis entropy --- parametric t-distributed stochastic neighbor embedding --- support vector machine --- information transfer --- Chinese stock sectors --- effective transfer entropy --- market crash --- system coupling --- cross-visibility graphs --- image entropy --- geodesic distance --- Dempster-Shafer evidence theory --- uncertainty of basic probability assignment --- belief entropy --- plausibility transformation --- weighted Hartley entropy --- Shannon entropy --- learning --- information --- novelty detection --- non-probabilistic entropy --- learning systems --- permutation entropy --- embedded dimension --- short time records --- signal classification --- relevance analysis --- global optimization --- meta-heuristic --- firefly algorithm --- cross-entropy method --- co-evolution --- symbolic analysis --- ordinal patterns --- Permutation entropy --- conditional entropy of ordinal patterns --- Kolmogorov-Sinai entropy --- algorithmic complexity --- information entropy --- particle size distribution --- selfsimilar measure --- simulation --- data analysis --- entropy --- entropy measures --- automatic learning

Circular Economy, Ethical Funds, and Engineering Projects

Authors: --- ---
ISBN: 9783039282524 9783039282531 Year: Pages: 300 DOI: 10.3390/books978-3-03928-253-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

This special issue provides a collection of 15 papers with modern theories and applications for circular economy, engineering projects, entrepreneurship models, and investor decisions. After the commencing review on Occupational Health and Safety Management-Systems Standards, follow papers which can be classified into four categories which cover the overall scope of special issue. The first category includes papers regarding the micro-level of circular economy. This means case studies in firm-level which implement different techniques to achieve sustainable development and circular economy goals. The findings reveal interesting achievements which are associated with cultural characteristics of the countries these case studies have been conducted. The second category of papers refers to the meso-level of circular economy where firms cooperate with each other by exchanging byproducts and organizing common operational procedures and routines to address environmental problems. The findings suggest assessment information technology tools to support industrial symbiosis among European firms. The next body of literature encompasses macro-level where circular economy techniques are implemented at a country level. Findings suggest methodologies for implementing and tracking circular economy in cities. Finally, a number of papers are included that focus on advanced engineering techniques. These techniques are useful tools for achieving circular economy and sustainability.

Keywords

cost prediction of substation project --- Ensemble Empirical Mode Decomposition --- Cuckoo Search --- Support Vector Machines --- climate change --- adaptation --- manufacturing firms --- strategic management --- action theory --- Value-at-Risk --- probabilistic alternative approach --- Theory of Inventive Problem Solving --- Project Definition Rating Index --- optimal project profitability --- prefabrication housing production --- planning and control --- critical success factors --- China --- CCPM --- piping construction --- material procurement management --- resource competition --- buffer management --- PERT/CPM --- stochastic simulation --- construction delay --- corporate philanthropy --- information transfer --- political connections --- social capital --- social network --- social network centrality --- sustainability --- circular economy --- investments --- sources of funding --- SME --- sustainable economy --- smart city --- sustainable city --- smart governance --- drivers --- Occupational Health and Safety (OHS) --- sustainability --- Management Standards --- emergy analysis --- pollution impact --- resource consumption --- steel production --- sustainable development --- Industrial symbiosis --- IT tools --- research and innovation projects --- risk assessment --- Fuzzy TOPSIS --- construction safety --- PRAT method --- sustainability --- value of travel time savings --- fuzzy logic --- rule-based systems --- transport project evaluation --- cost benefit analysis --- traffic congestion --- transport planning --- circular economy --- urbanization --- framework --- indicators --- circular city --- Life cycle assessment (LCA) --- carbon footprint --- renewable energy systems --- photovoltaics --- solar thermal collectors

Entropy Applications in Environmental and Water Engineering

Authors: --- ---
ISBN: 9783038972228 Year: Pages: 512 DOI: 10.3390/books978-3-03897-223-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.

Keywords

complexity --- streamflow --- water level --- composite multiscale sample entropy --- trend --- Poyang Lake basin --- four-parameter exponential gamma distribution --- principle of maximum entropy --- precipitation frequency analysis --- methods of moments --- maximum likelihood estimation --- flood frequency analysis --- generalized gamma (GG) distribution --- principle of maximum entropy (POME) --- entropy theory --- principle of maximum entropy (POME) --- GB2 distribution --- flood frequency analysis --- non-point source pollution --- ANN --- entropy weighting method --- data-scarce --- multi-events --- spatio-temporal variability --- soil water content --- entropy --- arid region --- joint entropy --- NDVI --- temperature --- precipitation --- groundwater depth --- Hei River basin --- turbulent flow --- canopy flow --- randomness --- coherent structures --- Shannon entropy --- Kolmogorov complexity --- entropy --- information transfer --- optimization --- radar --- rainfall network --- water resource carrying capacity --- forewarning model --- entropy of information --- fuzzy analytic hierarchy process --- projection pursuit --- accelerating genetic algorithm --- entropy production --- conditional entropy production --- stochastic processes --- scaling --- climacogram --- turbulence --- water resources vulnerability --- connection entropy --- changing environment --- set pair analysis --- Anhui Province --- cross-entropy minimization --- land suitability evaluation --- spatial optimization --- monthly streamflow forecasting --- Burg entropy --- configurational entropy --- entropy spectral analysis time series analysis --- entropy --- water monitoring --- network design --- hydrometric network --- information theory --- entropy applications --- hydrological risk analysis --- maximum entropy-copula method --- uncertainty --- Loess Plateau --- entropy --- water engineering --- Tsallis entropy --- principle of maximum entropy --- Lagrangian function --- probability distribution function --- flux concentration relation --- uncertainty --- information --- informational entropy --- variation of information --- continuous probability distribution functions --- confidence intervals --- precipitation --- variability --- marginal entropy --- crop yield --- Hexi corridor --- flow duration curve --- Shannon entropy --- entropy parameter --- modeling --- spatial and dynamics characteristic --- hydrology --- tropical rainfall --- statistical scaling --- Tsallis entropy --- multiplicative cascades --- Beta-Lognormal model --- rainfall forecast --- cross entropy --- ant colony fuzzy clustering --- combined forecast --- information entropy --- mutual information --- kernel density estimation --- ENSO --- nonlinear relation --- scaling laws --- power laws --- water distribution networks --- robustness --- flow entropy --- entropy theory --- frequency analysis --- hydrometeorological extremes --- Bayesian technique --- rainfall --- entropy ensemble filter --- ensemble model simulation criterion --- EEF method --- bootstrap aggregating --- bagging --- bootstrap neural networks --- El Niño --- ENSO --- neural network forecast --- sea surface temperature --- tropical Pacific --- entropy --- cross elasticity --- mean annual runoff --- water resources --- resilience --- quaternary catchment --- complement --- substitute --- entropy theory --- complex systems --- hydraulics --- hydrology --- water engineering --- environmental engineering

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)


License

CC by-nc-nd (5)


Language

english (4)

englisch (1)


Year
From To Submit

2020 (1)

2019 (3)

2018 (1)