Search results: Found 2

Listing 1 - 2 of 2
Sort by
Information Decomposition of Target Effects from Multi-Source Interactions

Authors: --- --- ---
ISBN: 9783038970156 9783038970163 Year: Pages: 336 DOI: 10.3390/books978-3-03897-016-3 Language: englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Physics (General)
Added to DOAB on : 2018-09-04 13:22:10
License:

Loading...
Export citation

Choose an application

Abstract

Using Shannon information theory to analyse the contributions from two source variables to a target, for example, we can measure the information held by one source about the target, the information held by the other source about the target, and the information held by those sources together about the target. Intuitively, however, there is strong desire to measure further notions of how this directed information interaction may be decomposed, e.g., how much information the two source variables hold redundantly about the target, how much each source variable holds uniquely, and how much information can only be discerned by synergistically examining the two sources together.The absence of measures for such decompositions into redundant, unique and synergistic information is arguably the most fundamental missing piece in classical information theory. Triggered by the formulation of the Partial Information Decomposition framework by Williams and Beer in 2010, the past few years have witnessed a concentration of work by the community in proposing, contrasting, and investigating new measures to capture these notions of information decomposition.This Special Issue seeks to bring together these efforts, to capture a snapshot of the current research, as well as to provide impetus for and focused scrutiny on newer work, present progress to the wider community and attract further research. Our contributions present: several new approaches for measures of such decompotions; commentary on properties, interpretations and limitations of such approaches; and applications to empirical data (in particular to neural data).

Information Theory in Neuroscience

Authors: ---
ISBN: 9783038976646 Year: Pages: 280 DOI: 10.3390/books978-3-03897-665-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Science (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

As the ultimate information processing device, the brain naturally lends itself to being studied with information theory. The application of information theory to neuroscience has spurred the development of principled theories of brain function, and has led to advances in the study of consciousness, as well as to the development of analytical techniques to crack the neural code—that is, to unveil the language used by neurons to encode and process information. In particular, advances in experimental techniques enabling the precise recording and manipulation of neural activity on a large scale now enable for the first time the precise formulation and the quantitative testing of hypotheses about how the brain encodes and transmits the information used for specific functions across areas. This Special Issue presents twelve original contributions on novel approaches in neuroscience using information theory, and on the development of new information theoretic results inspired by problems in neuroscience.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (1)

englisch (1)


Year
From To Submit

2019 (1)

2018 (1)