Search results: Found 2

Listing 1 - 2 of 2
Sort by
The dynamics of finite-size settling particles

Author:
Book Series: Dissertationsreihe am Institut für Hydromechanik, Karlsruher Institut für Technologie / Karlsruher Institut für Technologie (KIT), Institut für Hydromechanik ISSN: 14394111 ISBN: 9783731503071 Year: Volume: 2015,1 Pages: XIX, 238 p. DOI: 10.5445/KSP/1000044723 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: General and Civil Engineering
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

This book contributes to the fundamental understanding of the physical mechanisms that take place in pseudo turbulent particulate flows. In the present work we have considered the sedimentation of large numbers of spherical rigid particles in an initially quiescent flow field. We have performed direct numerical simulations employing an immersed boundary method for the representation of the fluid-solid interface. The results evidence that depending on the particle settling regime (i.e. Galileo number and particle-to-fluid density ratio) the particles may exhibit strong inhomogeneous spatial distribution. It is found that the particles are preferentially located in regions with downward fluid motion. The particles inside clusters experience larger settling velocities than the average. The flow in all flow cases is observed to exhibit characteristic features of pseudo-turbulence. The particle-induced flow field is further found to be highly anisotropic with dominant vertical components. The results indicate that, in the present flow configurations, the collective and mobility effects play significant role for the particle and fluid motion.

Micro/Nano Devices for Blood Analysis

Authors: --- ---
ISBN: 9783039218240 9783039218257 Year: Pages: 174 DOI: 10.3390/books978-3-03921-825-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.

Listing 1 - 2 of 2
Sort by
Narrow your search