Search results: Found 10

Listing 1 - 10 of 10
Sort by
Using Noise to Characterize Vision

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197538 Year: Pages: 127 DOI: 10.3389/978-2-88919-753-8 Language: English
Publisher: Frontiers Media SA
Subject: Psychology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Noise has been widely used to investigate the processing properties of various visual functions (e.g. detection, discrimination, attention, perceptual learning, averaging, crowding, face recognition), in various populations (e.g. older adults, amblyopes, migrainers, dyslexic children), using noise along various dimensions (e.g. pixel noise, orientation jitter, contrast jitter). The reason to use external noise is generally not to characterize visual processing in external noise per se, but rather to reveal how vision works in ordinary conditions when performance is limited by our intrinsic noise rather than externally added noise. For instance, reverse correlation aims at identifying the relevant information to perform a given task in noiseless conditions and measuring contrast thresholds in various noise levels can be used to understand the impact of intrinsic noise that limits sensitivity to noiseless stimuli. Why use noise? Since Fechner named it, psychophysics has always emphasized the systematic investigation of conditions that break vision. External noise raises threshold hugely and selectively. In hearing, Fletcher used noise in his famous critical-band experiments to reveal frequency-selective channels in hearing. Critical bands have been found in vision too. More generally, the big reliable effects of noise give important clues to how the system works. And simple models have been proposed to account for the effects of visual noise. As noise has been more widely used, questions have been raised about the simplifying assumptions that link the processing properties in noiseless conditions to measurements in external noise. For instance, it is usually assumed that the processing strategy (or mechanism) used to perform a task and its processing properties (e.g. filter tuning) are unaffected by the addition of external noise. Some have suggested that the processing properties could change with the addition of external noise (e.g. change in filter tuning or more lateral masking in noise), which would need to be considered before drawing conclusions about the processing properties in noiseless condition. Others have suggested that different processing properties (or mechanisms) could be solicited in low and high noise conditions, complicating the characterization of processing properties in noiseless condition based on processing properties identified in noise conditions. The current Research Topic probes further into what the effects of visual noise tell us about vision in ordinary conditions. Our Editorial gives an overview of the articles in this special issue.

Google Earth Engine Applications

Authors: ---
ISBN: 9783038978848 9783038978855 Year: Pages: 420 DOI: 10.3390/books978-3-03897-885-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Environmental Technology
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

In a rapidly changing world, there is an ever-increasing need to monitor the Earth’s resources and manage it sustainably for future generations. Earth observation from satellites is critical to provide information required for informed and timely decision making in this regard. Satellite-based earth observation has advanced rapidly over the last 50 years, and there is a plethora of satellite sensors imaging the Earth at finer spatial and spectral resolutions as well as high temporal resolutions. The amount of data available for any single location on the Earth is now at the petabyte-scale. An ever-increasing capacity and computing power is needed to handle such large datasets. The Google Earth Engine (GEE) is a cloud-based computing platform that was established by Google to support such data processing. This facility allows for the storage, processing and analysis of spatial data using centralized high-power computing resources, allowing scientists, researchers, hobbyists and anyone else interested in such fields to mine this data and understand the changes occurring on the Earth’s surface. This book presents research that applies the Google Earth Engine in mining, storing, retrieving and processing spatial data for a variety of applications that include vegetation monitoring, cropland mapping, ecosystem assessment, and gross primary productivity, among others. Datasets used range from coarse spatial resolution data, such as MODIS, to medium resolution datasets (Worldview -2), and the studies cover the entire globe at varying spatial and temporal scales.

Keywords

Google Earth Engine --- NDVI --- vegetation index --- Landsat --- remote sensing --- phenology --- surface reflectance --- cropland mapping --- cropland areas --- 30-m --- Landsat-8 --- Sentinel-2 --- Random Forest --- Support Vector Machines --- segmentation --- RHSeg --- Google Earth Engine --- Africa --- remote sensing --- semi-arid --- ecosystem assessment --- land use change --- image classification --- seasonal vegetation --- carbon cycle --- Google Earth Engine --- crop yield --- gross primary productivity (GPP) --- data fusion --- Landsat --- MODIS --- MODIS --- Random Forest --- pasture mapping --- Brazilian pasturelands dynamics --- Google Earth Engine --- crop classification --- multi-classifier --- cloud computing --- time series --- high spatial resolution --- BACI --- Enhanced Vegetation Index --- Google Earth Engine --- cloud-based geo-processing --- satellite-derived bathymetry --- image composition --- pseudo-invariant features --- sun glint correction --- empirical --- spatial error --- Google Earth Engine --- low cost in situ --- Sentinel-2 --- Mediterranean --- burn severity --- change detection --- Landsat --- dNBR --- RdNBR --- RBR --- composite burn index (CBI) --- MTBS --- lower mekong basin --- landsat collection --- suspended sediment concentration --- online application --- google earth engine --- Landsat --- Google Earth Engine --- protected area --- forest and land use mapping --- machine learning classification --- China --- temporal compositing --- image time series --- multitemporal analysis --- change detection --- cloud masking --- Landsat-8 --- Google Earth Engine (GEE) --- Google Earth Engine --- LAI --- FVC --- FAPAR --- CWC --- plant traits --- random forests --- PROSAIL --- small-scale mining --- industrial mining --- google engine --- image classification --- land-use cover change --- seagrass --- habitat mapping --- image composition --- machine learning --- support vector machines --- Google Earth Engine --- Sentinel-2 --- Aegean --- Ionian --- global scale --- soil moisture --- Soil Moisture Ocean Salinity --- Soil Moisture Active Passive --- Google Earth Engine --- drought --- cloud computing --- remote sensing --- snow hydrology --- water resources --- Google Earth Engine --- user assessment --- MODIS --- snow cover --- flood --- disaster prevention --- emergency response --- decision making --- Google Earth Engine --- land cover --- deforestation --- Brazilian Amazon --- Bayesian statistics --- BULC-U --- Mato Grosso --- spatial resolution --- Landsat --- GlobCover --- SDG --- surface urban heat island --- Geo Big Data --- Google Earth Engine --- global monitoring service --- Google Earth Engine --- web portal --- satellite imagery --- trends --- earth observation --- wetland --- Google Earth Engine --- Sentinel-1 --- Sentinel-2 --- random forest --- cloud computing --- geo-big data --- cloud computing --- big data analytics --- long term monitoring --- data archival --- early warning systems

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976844 9783038976851 Year: Volume: 1 Pages: 426 DOI: 10.3390/books978-3-03897-685-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976981 9783038976998 Year: Volume: 2 Pages: 376 DOI: 10.3390/books978-3-03897-699-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Intelligent Imaging and Analysis

Authors: ---
ISBN: 9783039219209 9783039219216 Year: Pages: 492 DOI: 10.3390/books978-3-03921-921-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Imaging and analysis are widely involved in various research fields, including biomedical applications, medical imaging and diagnosis, computer vision, autonomous driving, and robot controls. Imaging and analysis are now facing big changes regarding intelligence, due to the breakthroughs of artificial intelligence techniques, including deep learning. Many difficulties in image generation, reconstruction, de-noising skills, artifact removal, segmentation, detection, and control tasks are being overcome with the help of advanced artificial intelligence approaches. This Special Issue focuses on the latest developments of learning-based intelligent imaging techniques and subsequent analyses, which include photographic imaging, medical imaging, detection, segmentation, medical diagnosis, computer vision, and vision-based robot control. These latest technological developments will be shared through this Special Issue for the various researchers who are involved with imaging itself, or are using image data and analysis for their own specific purposes.

Keywords

image inspection --- non-referential method --- feature extraction --- fault pattern learning --- weighted kernel density estimation (WKDE) --- rail surface defect --- UAV image --- defect detection --- gray stretch maximum entropy --- image enhancement --- defect segmentation --- semi-automatic segmentation --- MR spine image --- vertebral body --- graph-based segmentation --- correlation --- surface defect of steel sheet --- image segmentation --- saliency detection --- low-rank and sparse decomposition --- intervertebral disc --- segmentation --- convolutional neural network --- fine grain segmentation --- U-net --- deep learning --- magnetic resonance image --- lumbar spine --- image adjustment --- colorfulness --- contrast --- sharpness --- high dynamic range --- local registration --- iterative closest points --- multimodal medical image registration --- machine vision --- point cloud registration --- greedy projection triangulation --- local correlation --- three-dimensional imaging --- optimization arrangement --- cavitation bubble --- water hydraulic valve --- defect inspection --- image processing --- feature extraction --- classification methods --- medical image registration --- image alignment in medical images --- misalignment correction in MRI --- midsagittal plane extraction --- symmetry detection --- PCA --- conformal mapping --- mesh parameterization --- mesh partitioning --- pixel extraction --- texture mapping --- image analysis --- image retrieval --- spatial information --- image classification --- computer vision --- image restoration --- motion deburring --- image denoising --- sparse feedback --- Image processing --- segmentation --- spline --- grey level co-occurrence matrix --- gradient detection --- threshold selection --- OpenCV --- machine learning --- transfer learning --- Inception-v3 --- geological structure images --- convolutional neural networks --- image segmentation --- active contour model --- level set --- signed pressure force function --- image segmentation --- deep learning --- synthetic aperture radar (SAR) --- oil slicks --- segnet --- pectus excavatum --- nuss procedure --- patient-specific nuss bar --- minimally invasive surgery --- computerized numerical control bending machine --- computer-aided design --- computer-aided manufacturing --- statistical body shape model --- self-intersection penalty term --- 3D pose estimation --- 3D semantic mapping --- incrementally probabilistic fusion --- CRF regularization --- road scenes --- deep learning --- medical image classification --- additional learning --- CT image --- automatic training --- GoogLeNet --- intelligent evaluation --- automated cover tests --- deviation of strabismus --- pupil localization --- shape from focus --- wear measurement --- sprocket teeth --- normal distribution operator image filtering --- adaptive evaluation window --- reverse engineering --- human parsing --- depth-estimation --- computational efficiency --- capacity optimization --- underwater visual localization method --- line segment features --- PL-SLAM --- face sketch synthesis --- face sketch recognition --- joint training model --- data imbalance --- Contrast Tomography (CT) --- pre-training strategy --- segmentation --- super-resolution --- dual-channel --- residual block --- convolutional kernel parameter --- long-term and short-term memory blocks --- n/a

Emerging Memory and Computing Devices in the Era of Intelligent Machines

Author:
ISBN: 9783039285020 / 9783039285037 Year: Pages: 276 DOI: 10.3390/books978-3-03928-503-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Computing systems are undergoing a transformation from logic-centric towards memory-centric architectures, where overall performance and energy efficiency at the system level are determined by the density, performance, functionality and efficiency of the memory, rather than the logic sub-system.

Keywords

3D-stacked --- DRAM --- in-DRAM cache --- low-latency --- low-power --- resistive memory --- crossbar --- in-memory computing --- analogue computing --- matrix-vector multiplication --- ECG --- voltage-controlled magnetic anisotropy --- magnetoresistive random access memory --- magnetic tunnel junction --- bioelectronic devices --- bionanohybrid material --- biomemory --- biologic gate --- bioprocessor --- protein --- nucleic acid --- nanoparticles --- SONOS --- flash memory --- charge spreading --- plasma treatment --- Oxygen-related trap --- data retention --- BCH --- decoder --- iBM --- GPU --- hybrid --- flash memory --- Galois field --- CUDA --- in-memory computing --- logic-in-memory --- non-von Neumann architecture --- configurable logic-in-memory architecture --- memory wall --- convolutional neural networks --- emerging technologies --- perpendicular Nano Magnetic Logic (pNML) --- silicon oxide-based memristors --- resistance switching mechanism --- variability --- conductive filament --- Weibull distribution --- quantum point contact --- real-time system --- dynamic voltage scaling --- task placement --- low-power technique --- nonvolatile memory --- neuromorphic system --- Hebbian training --- guide training --- memristor --- image classification --- STT-MRAM --- flip-flop --- power gating --- low-power --- bipolar resistive switching characteristics --- annealing temperatures --- solution-based dielectric --- resistive random access memory (RRAM) --- multi-level cell --- phase change memory --- programmable ramp-down current pulses --- Fast Fourier Transform --- in-memory computing --- associative processor --- non-von neumann architecture --- in-memory computing --- memristor --- RISC-V --- Internet of things --- blockchain --- U-shape recessed channel --- floating gate --- neuromorphic computing --- MCU (microprogrammed control unit) --- chalcogenide --- electrochemical metallization cell --- electrochemical metallization (ECM) --- ion conduction --- memristor --- self-directed channel (SDC) --- memristor --- crossbar array --- wire resistance --- synaptic weight --- character recognition --- n/a

Advances in Digital Image Correlation (DIC)

Authors: ---
ISBN: 9783039285143 / 9783039285150 Year: Pages: 252 DOI: 10.3390/books978-3-03928-515-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Digital image correlation (DIC) has become the most popular full field measurement technique in experimental mechanics. It is a versatile and inexpensive measurement method that provides a large amount of experimental data. Because DIC takes advantage of a huge variety of image modalities, the technique allows covering a wide range of space and time scales. Stereo extends the scope of DIC to non-planar cases, which are more representative of industrial use cases. With the development of tomography, digital volume correlation now provides access to volumetric data, enabling the study of the inner behavior of materials and structures.However, the use of DIC data to quantitatively validate models or accurately identify a set of constitutive parameters remains challenging. One of the reasons lies in the compromises between measurement resolution and spatial resolution. Second, the question of the boundary conditions is still open. Another reason is that the measured displacements are not directly comparable with usual simulations. Finally, the use of full field data leads to new computational challenges.

Keywords

super pressure balloon --- stress concentration --- strain --- non-contact measurement --- digital image correlation --- large deformation --- digital image correlation --- multi-perspective --- single camera --- cross dichroic prism --- earthquake rupture --- fault geometry --- spatiotemporal evolution --- strain gage --- spatial sampling rate --- rupture speed --- slip velocity --- high-speed camera --- experimental-numerical method --- digital image correlation --- finite element method --- static analysis --- arch structures --- fracture process zone --- digital image correlation technique --- acoustic emission technique --- stress intensity factor --- 3D deformation --- digital volume correlation --- optical coherence elastography --- virtual fields method --- layered material --- interior 3D deformation --- digital volumetric speckle photography --- X-ray microtomography --- digital volume correlation --- red sandstone --- woven composite beam --- digital image correlation --- dynamic interfacial rupture --- traction continuity across interfaces --- non-contact video gauge --- measurement --- stress-strain relationship --- uniaxial tensile test --- elevated temperature --- DIC --- initial condition --- image registration --- strain measurement --- copper plate --- underwater impulsive loading --- non-liner dynamic deformation --- 3D digital image correlation --- image correlation --- gradient correlation functions --- laser speckles --- image cross-correlation --- monitoring --- geosciences --- automated systems --- machine learning --- image classification --- image shadowing --- characterization of composite materials --- interlaminar tensile strength --- digital image correlation --- inverse method --- finite element model updating --- Digital image correlation (DIC) --- composite structures --- structural testing --- experimental mechanics --- composite materials --- automated composite manufacturing --- composite inspection --- automated fiber placement (AFP) --- DIC --- traceable calibration --- accuracy --- error --- n/a

Deep Learning Applications with Practical Measured Results in Electronics Industries

Authors: --- --- ---
ISBN: 9783039288632 / 9783039288649 Year: Pages: 272 DOI: 10.3390/books978-3-03928-864-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This book collects 14 articles from the Special Issue entitled “Deep Learning Applications with Practical Measured Results in Electronics Industries” of Electronics. Topics covered in this Issue include four main parts: (1) environmental information analyses and predictions, (2) unmanned aerial vehicle (UAV) and object tracking applications, (3) measurement and denoising techniques, and (4) recommendation systems and education systems. These authors used and improved deep learning techniques (e.g., ResNet (deep residual network), Faster-RCNN (faster regions with convolutional neural network), LSTM (long short term memory), ConvLSTM (convolutional LSTM), GAN (generative adversarial network), etc.) to analyze and denoise measured data in a variety of applications and services (e.g., wind speed prediction, air quality prediction, underground mine applications, neural audio caption, etc.). Several practical experiments were conducted, and the results indicate that the performance of the presented deep learning methods is improved compared with the performance of conventional machine learning methods.

Keywords

computational intelligence --- offshore wind --- forecasting --- machine learning --- neural networks --- neuro-fuzzy systems --- humidity sensor --- data fusion --- nonlinear optimization --- multiple linear regression --- GSA-BP --- geometric errors correction --- kinematic modelling --- lateral stage errors --- Imaging Confocal Microscope --- K-means clustering --- data partition --- Least Squares method --- deep learning --- multivariate time series forecasting --- multivariate temporal convolutional network --- CNN --- hyperspectral image classification --- information measure --- transfer learning --- neighborhood noise reduction --- visual tracking --- update occasion --- update mechanism --- background model --- network layer contribution --- saliency information --- geometric errors --- rigid body kinematics --- lateral stage errors --- imaging confocal microscope --- MCM uncertainty evaluation --- dot grid target --- smart grid --- foreign object --- binary classification --- convolutional network --- image inpainting --- content reconstruction --- instance segmentation --- underground mines --- intelligent surveillance --- residual networks --- compressed sensing --- image compression --- image restoration --- discrete wavelet transform --- intelligent tire manufacturing --- digital shearography --- faster region-based CNN --- tire bubble defects --- tire quality assessment --- unmanned aerial vehicle --- UAV --- trajectory planning --- GA --- A* --- multiple constraints --- recommender system --- human computer interaction --- eye-tracking device --- deep learning --- oral evaluation --- generative adversarial network --- neural audio caption --- gated recurrent unit --- long short-term memory --- deep learning --- machine learning --- supervised learning --- unsupervised learning --- reinforcement learning --- optimization techniques

Sensors in Agriculture

Author:
ISBN: 9783038974123 9783038974130 Year: Pages: 346 DOI: 10.3390/books978-3-03897-413-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Agriculture requires technical solutions for increasing production while lessening environmental impact by reducing the application of agro-chemicals and increasing the use of environmentally friendly management practices. A benefit of this is the reduction of production costs. Sensor technologies produce tools to achieve the abovementioned goals. The explosive technological advances and developments in recent years have enormously facilitated the attainment of these objectives, removing many barriers for their implementation, including the reservations expressed by farmers. Precision agriculture and ‘smart farming’ are emerging areas where sensor-based technologies play an important role. Farmers, researchers, and technical manufacturers are joining their efforts to find efficient solutions, improvements in production, and reductions in costs. This book brings together recent research and developments concerning novel sensors and their applications in agriculture. Sensors in agriculture are based on the requirements of farmers, according to the farming operations that need to be addressed.

Keywords

wireless sensor network (WSN) --- Wi-SUN --- vine --- mandarin orange --- thermal image --- fluorescent measurement --- X-ray fluorescence spectroscopy --- visible and near-infrared reflectance spectroscopy --- heavy metal contamination --- spectral pre-processing --- feature selection --- machine-learning --- LiDAR --- light-beam --- plant localization --- Kinect --- leaf area index --- radiative transfer model --- neural networks --- GF-1 satellite --- wide field view --- big data --- geo-information --- plant phenotyping --- grapevine breeding --- Vitis vinifera --- ambient intelligence --- wireless sensor --- fuzzy logic --- smart irrigation --- virtual organizations of agents --- CIE-Lab --- precision plant protection --- optical sensor --- weed control --- classification --- NIR hyperspectral imaging --- chemometrics analysis --- weeds --- UAS --- RPAS --- one-class --- machine learning --- remote sensing --- geoinformatics --- plant disease --- pest --- deep convolutional neural networks --- real-time processing --- detection --- hyperspectral imaging --- soil type classification --- total nitrogen --- texture features --- data fusion --- Fusarium --- near-infrared --- spectroscopy --- hulled barely --- partial least squares-discriminant analysis --- remote sensing --- precision agriculture --- crop monitoring --- data fusion --- speckle --- diffusion --- scattering --- biological sensing --- apparent soil electrical conductivity --- ECa-directed soil sampling --- electromagnetic induction --- proximal sensor --- response surface sampling --- salt tolerance --- boron tolerance --- soil mapping --- soil salinity --- spatial variability --- irrigation --- energy balance --- water management --- semi-arid regions --- on-line vis-NIR measurement --- total nitrogen --- total carbon --- spiking --- gradient boosted machines --- artificial neural networks --- random forests --- rice --- striped stem-borer --- hyperspectral imaging --- texture feature --- data fusion --- greenhouse --- wireless sensor network --- data fusion --- dynamic weight --- dataset --- agriculture --- obstacle detection --- computer vision --- cameras --- stereo imaging --- thermal imaging --- LiDAR --- radar --- object tracking --- crop area --- remote sensing image classification --- area frame sampling --- stratification --- regression estimator --- agriculture --- meat spoilage --- vegetable oil --- quality assessment --- electronic nose --- electrochemical sensors --- spectral analysis --- feature selection --- genetic algorithms --- classification --- vegetation indices --- vineyard --- diseases --- spatial data --- sensor --- data fusion --- change of support --- geostatistics --- precision agriculture --- management zones --- event detection --- back propagation model --- multivariate water quality parameters --- time-series data --- spatial-temporal model --- connected dominating set --- water supply network --- SS-OCT --- Capsicum annuum --- germination --- salt concentration --- deep learning --- clover-grass --- precision agriculture --- dry matter composition --- proximity sensing --- 3D reconstruction --- RGB-D sensor --- crop inspection platform --- water depth sensors --- soil moisture sensors --- temperature sensors --- rice field monitoring --- irrigation --- silage --- packing density --- moisture content --- compound sensor --- simultaneous measurement --- birth sensor --- bovine embedded hardware --- ambient intelligence --- virtual organizations of agents --- Fusarium --- near infrared --- discrimination --- hulled barely --- naked barley --- wheat --- dielectric probe --- apple shelf-life --- dielectric dispersion --- electronic nose --- pest scouting --- pest management --- gas sensor --- noninvasive detection --- nitrogen --- near infrared sensors --- drying temperature --- SPA-MLR --- PLS --- CARS --- hyperspectral camera --- handheld --- sensor evaluation --- case studies --- soil --- moisture --- sensor --- landslide --- rice leaves --- chromium content --- laser-induced breakdown spectroscopy --- laser wavelength --- preprocessing methods --- agricultural land --- field crops --- land cover --- photograph-grid method --- remote sensing --- data validation and calibration --- mobile app --- wireless sensor networks (WSN) --- energy efficiency --- distributed systems --- processing of sensed data --- WSN distribution algorithms --- recognition patterns --- agriculture

Sensors in Agriculture

Author:
ISBN: 9783038977445 9783038977452 Year: Pages: 354 DOI: 10.3390/books978-3-03897-745-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Agriculture requires technical solutions for increasing production while lessening environmental impact by reducing the application of agro-chemicals and increasing the use of environmentally friendly management practices. A benefit of this is the reduction of production costs. Sensor technologies produce tools to achieve the abovementioned goals. The explosive technological advances and developments in recent years have enormously facilitated the attainment of these objectives, removing many barriers for their implementation, including the reservations expressed by farmers. Precision agriculture and ‘smart farming’ are emerging areas where sensor-based technologies play an important role. Farmers, researchers, and technical manufacturers are joining their efforts to find efficient solutions, improvements in production, and reductions in costs. This book brings together recent research and developments concerning novel sensors and their applications in agriculture. Sensors in agriculture are based on the requirements of farmers, according to the farming operations that need to be addressed.

Keywords

wireless sensor network (WSN) --- Wi-SUN --- vine --- mandarin orange --- thermal image --- fluorescent measurement --- X-ray fluorescence spectroscopy --- visible and near-infrared reflectance spectroscopy --- heavy metal contamination --- spectral pre-processing --- feature selection --- machine-learning --- LiDAR --- light-beam --- plant localization --- Kinect --- leaf area index --- radiative transfer model --- neural networks --- GF-1 satellite --- wide field view --- big data --- geo-information --- plant phenotyping --- grapevine breeding --- Vitis vinifera --- ambient intelligence --- wireless sensor --- fuzzy logic --- smart irrigation --- virtual organizations of agents --- CIE-Lab --- precision plant protection --- optical sensor --- weed control --- classification --- NIR hyperspectral imaging --- chemometrics analysis --- weeds --- UAS --- RPAS --- one-class --- machine learning --- remote sensing --- geoinformatics --- plant disease --- pest --- deep convolutional neural networks --- real-time processing --- detection --- hyperspectral imaging --- soil type classification --- total nitrogen --- texture features --- data fusion --- Fusarium --- near-infrared --- spectroscopy --- hulled barely --- partial least squares-discriminant analysis --- remote sensing --- precision agriculture --- crop monitoring --- data fusion --- speckle --- diffusion --- scattering --- biological sensing --- apparent soil electrical conductivity --- ECa-directed soil sampling --- electromagnetic induction --- proximal sensor --- response surface sampling --- salt tolerance --- boron tolerance --- soil mapping --- soil salinity --- spatial variability --- irrigation --- energy balance --- water management --- semi-arid regions --- on-line vis-NIR measurement --- total nitrogen --- total carbon --- spiking --- gradient boosted machines --- artificial neural networks --- random forests --- rice --- striped stem-borer --- hyperspectral imaging --- texture feature --- data fusion --- greenhouse --- wireless sensor network --- data fusion --- dynamic weight --- dataset --- agriculture --- obstacle detection --- computer vision --- cameras --- stereo imaging --- thermal imaging --- LiDAR --- radar --- object tracking --- crop area --- remote sensing image classification --- area frame sampling --- stratification --- regression estimator --- agriculture --- meat spoilage --- vegetable oil --- quality assessment --- electronic nose --- electrochemical sensors --- spectral analysis --- feature selection --- genetic algorithms --- classification --- vegetation indices --- vineyard --- diseases --- spatial data --- sensor --- data fusion --- change of support --- geostatistics --- precision agriculture --- management zones --- event detection --- back propagation model --- multivariate water quality parameters --- time-series data --- spatial-temporal model --- connected dominating set --- water supply network --- SS-OCT --- Capsicum annuum --- germination --- salt concentration --- deep learning --- clover-grass --- precision agriculture --- dry matter composition --- proximity sensing --- 3D reconstruction --- RGB-D sensor --- crop inspection platform --- water depth sensors --- soil moisture sensors --- temperature sensors --- rice field monitoring --- irrigation --- silage --- packing density --- moisture content --- compound sensor --- simultaneous measurement --- birth sensor --- bovine embedded hardware --- ambient intelligence --- virtual organizations of agents --- Fusarium --- near infrared --- discrimination --- hulled barely --- naked barley --- wheat --- dielectric probe --- apple shelf-life --- dielectric dispersion --- electronic nose --- pest scouting --- pest management --- gas sensor --- noninvasive detection --- nitrogen --- near infrared sensors --- drying temperature --- SPA-MLR --- PLS --- CARS --- hyperspectral camera --- handheld --- sensor evaluation --- case studies --- soil --- moisture --- sensor --- landslide --- rice leaves --- chromium content --- laser-induced breakdown spectroscopy --- laser wavelength --- preprocessing methods --- agricultural land --- field crops --- land cover --- photograph-grid method --- remote sensing --- data validation and calibration --- mobile app --- wireless sensor networks (WSN) --- energy efficiency --- distributed systems --- processing of sensed data --- WSN distribution algorithms --- recognition patterns --- agriculture

Listing 1 - 10 of 10
Sort by
Narrow your search