Search results: Found 9

Listing 1 - 9 of 9
Sort by
Anatomy and Plasticity in Large-Scale Brain Models

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450657 Year: Pages: 173 DOI: 10.3389/978-2-88945-065-7 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Supercomputing facilities are becoming increasingly available for simulating activity dynamics in large-scale neuronal networks. On today's most advanced supercomputers, networks with up to a billion of neurons can be readily simulated. However, building biologically realistic, full-scale brain models requires more than just a huge number of neurons. In addition to network size, the detailed local and global anatomy of neuronal connections is of crucial importance. Moreover, anatomical connectivity is not fixed, but can rewire throughout life (structural plasticity)—an aspect that is missing in most current network models, in which plasticity is confined to changes in synaptic strength (synaptic plasticity). The papers in this Ebook, which may broadly be divided into three themes, aim to bring together high-performance computing with recent experimental and computational research in neuroanatomy. In the first theme (fiber connectivity), new methods are described for measuring and data-basing microscopic and macroscopic connectivity. In the second theme (structural plasticity), novel models are introduced that incorporate morphological plasticity and rewiring of anatomical connections. In the third theme (large-scale simulations), simulations of large-scale neuronal networks are presented with an emphasis on anatomical detail and plasticity mechanisms. Together, the articles in this Ebook make the reader aware of the methods and models by which large-scale brain networks running on supercomputers can be extended to include anatomical detail and plasticity.Supercomputing facilities are becoming increasingly available for simulating activity dynamics in large-scale neuronal networks. On today's most advanced supercomputers, networks with up to a billion of neurons can be readily simulated. However, building biologically realistic, full-scale brain models requires more than just a huge number of neurons. In addition to network size, the detailed local and global anatomy of neuronal connections is of crucial importance. Moreover, anatomical connectivity is not fixed, but can rewire throughout life (structural plasticity)—an aspect that is missing in most current network models, in which plasticity is confined to changes in synaptic strength (synaptic plasticity). The papers in this Ebook, which may broadly be divided into three themes, aim to bring together high-performance computing with recent experimental and computational research in neuroanatomy. In the first theme (fiber connectivity), new methods are described for measuring and data-basing microscopic and macroscopic connectivity. In the second theme (structural plasticity), novel models are introduced that incorporate morphological plasticity and rewiring of anatomical connections. In the third theme (large-scale simulations), simulations of large-scale neuronal networks are presented with an emphasis on anatomical detail and plasticity mechanisms. Together, the articles in this Ebook make the reader aware of the methods and models by which large-scale brain networks running on supercomputers can be extended to include anatomical detail and plasticity.

Scientific Programming and Computer Architecture

Author:
Book Series: Scientific and Engineering Computation ISBN: 9780262340472 9780262036290 Year: Pages: 624 Language: English
Publisher: The MIT Press
Subject: Computer Science
Added to DOAB on : 2019-01-17 11:41:31
License:

Loading...
Export citation

Choose an application

Abstract

A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer.What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.

The formation of patterns in subaqueous sediment

Author:
Book Series: Dissertationsreihe am Institut für Hydromechanik, Karlsruher Institut für Technologie / Karlsruher Institut für Technologie (KIT), Institut für Hydromechanik ISSN: 14394111 ISBN: 9783731505327 Year: Volume: 2016,1 Pages: XXIII, 142 p. DOI: 10.5445/KSP/1000054986 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: General and Civil Engineering
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

This book investigates the formation of subaqueous patterns by means of high-fidelity numerical simulations which resolve all the relevant scales of the flow and the sediment bed. This is required to provide a space- and time-resolved information on the flow field and the sediment bed. Secondly, detailed analysis of the generated data allows to address the different governing mechanisms involved in the formation of patterns as well as to access the validity of various existing models.

Scalable Interactive Visualization

Authors: ---
ISBN: 9783038428039 9783038428046 Year: Pages: VIII, 236 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2018-05-08 11:38:50
License:

Loading...
Export citation

Choose an application

Abstract

Data available in today’s information society is ever growing in size and complexity—i.e., unstructured, multidimensional, uncertain, etc.—making it impossible to survey and understand this data. Traditionally, most of these datasets are stored and depicted as huge tables, hindering efficient retrieval of salient information—similarities, outliers, structures, origin, etc. Interactive visualization provides an interface to this data that can help gleaning valuable information from it, thus supporting better data understanding by significantly reducing cognitive load on the analyst. Two fundamental concepts, visualization and interaction, form the basis of the underlying scientific methods. Combining these concepts connects two key research areas in computer science: visualization and human-computer interaction (HCI) and brings together practitioners from many disciplines. The result is highly multi-disciplinary work with significant impact and virtually unlimited application areas. However, truly interactive visualizations are hard to design and implement, so researchers have to solve multiple problems. This Special Issue provides an overciew over the current state-of-the-art of “Interactive Visualization.” It shows recent work in the field, as well as trends for future development.

Supercomputing Frontiers: 4th Asian Conference, SCFA 2018, Singapore, March 26-29, 2018, Proceedings

Authors: ---
Book Series: Theoretical Computer Science and General Issues ISBN: 9783319699523 9783319699530 Year: Volume: 10776 Pages: 293 DOI: https://doi.org/10.1007/978-3-319-69953-0 Language: English
Publisher: Springer Nature Grant: National Supercomputing Centre (NSCC), Singapore
Subject: Computer Science
Added to DOAB on : 2018-07-20 15:24:25
License:

Loading...
Export citation

Choose an application

Abstract

It constitutes the refereed proceedings of the 4th Asian Supercomputing Conference, SCFA 2018, held in Singapore in March 2018. Supercomputing Frontiers will be rebranded as Supercomputing Frontiers Asia (SCFA), which serves as the technical programme for SCA18. The technical programme for SCA18 consists of four tracks: Application, Algorithms & LibrariesProgramming System SoftwareArchitecture, Network/Communications & ManagementData, Storage & VisualisationThe 20 papers presented in this volume were carefully reviewed nd selected from 60 submissions.

XoveTIC 2019: The 2nd XoveTIC Conference (XoveTIC 2019) A Coruña, Spain, 5–6 September 2019

Authors: --- --- --- --- et al.
ISBN: 9783039214433 9783039214440 Year: Pages: 158 DOI: 10.3390/books978-3-03921-444-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This issue of Proceedings gathers papers presented at XOVETIC2019 (A Coruña, Spain, 5-6 September 2019), a conference with the main goal of bringing together young researchers working in big data, artificial intelligence, Internet of Things, HPC(High-performance computing), cybersecurity, bioinformatics, natural language processing, 5G and others areas from the field of ICT (Information Communications Technology), and offering a platform to present the results of their research to a national audience in Galicia and north of Portugal. This second edition aims to serve as the basis of this event, which will be consolidated over time and acquire international projection. The conference is co-funded by Xunta de Galicia and European Union. European Regional Development Fund (ERDF).

High Performance Computing

Authors: --- --- ---
Book Series: Lecture Notes in Computer Science; Theoretical Computer Science and General Issues ISBN: 9783030343569 Year: Pages: 659 DOI: 10.1007/978-3-030-34356-9 Language: English
Publisher: Springer Nature
Subject: Computer Science
Added to DOAB on : 2020-05-14 09:30:29
License:

Loading...
Export citation

Choose an application

Abstract

This book constitutes the refereed post-conference proceedings of 13 workshops held at the 34th International ISC High Performance 2019 Conference, in Frankfurt, Germany, in June 2019: HPC I/O in the Data Center (HPC-IODC), Workshop on Performance & Scalability of Storage Systems (WOPSSS), Workshop on Performance & Scalability of Storage Systems (WOPSSS), 13th Workshop on Virtualization in High-Performance Cloud Computing (VHPC '18), 3rd International Workshop on In Situ Visualization: Introduction and Applications, ExaComm: Fourth International Workshop on Communication Architectures for HPC, Big Data, Deep Learning and Clouds at Extreme Scale, International Workshop on OpenPOWER for HPC (IWOPH18), IXPUG Workshop: Many-core Computing on Intel, Processors: Applications, Performance and Best-Practice Solutions, Workshop on Sustainable Ultrascale Computing Systems, Approximate and Transprecision Computing on Emerging Technologies (ATCET), First Workshop on the Convergence of Large Scale Simulation and Artificial Intelligence, 3rd Workshop for Open Source Supercomputing (OpenSuCo), First Workshop on Interactive High-Performance Computing, Workshop on Performance Portable Programming Models for Accelerators (P^3MA). The 48 full papers included in this volume were carefully reviewed and selected. They cover all aspects of research, development, and application of large-scale, high performance experimental and commercial systems. Topics include HPC computer architecture and hardware; programming models, system software, and applications; solutions for heterogeneity, reliability, power efficiency of systems; virtualization and containerized environments; big data and cloud computing; and artificial intelligence.

Quantum Foundations. 90 Years of Uncertainty

Authors: --- --- ---
ISBN: 9783038977544 Year: Pages: 188 DOI: 10.3390/books978-3-03897-755-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties.

Advanced Numerical Methods in Applied Sciences

Authors: ---
ISBN: 9783038976660 9783038976677 Year: Pages: 306 DOI: 10.3390/books978-3-03897-667-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different settings of numerical analysis, and this Special Issue aims at covering some important developments in various areas of application.

Keywords

time fractional differential equations --- mixed-index problems --- analytical solution --- asymptotic stability --- conservative problems --- Hamiltonian problems --- energy-conserving methods --- Poisson problems --- Hamiltonian Boundary Value Methods --- HBVMs --- line integral methods --- constrained Hamiltonian problems --- Hamiltonian PDEs --- highly oscillatory problems --- boundary element method --- finite difference method --- floating strike Asian options --- continuous geometric average --- barrier options --- isogeometric analysis --- adaptive methods --- hierarchical splines --- THB-splines --- local refinement --- linear systems --- preconditioners --- Cholesky factorization --- limited memory --- Volterra integral equations --- Volterra integro–differential equations --- collocation methods --- multistep methods --- convergence --- B-spline --- optimal basis --- fractional derivative --- Galerkin method --- collocation method --- spectral (eigenvalue) and singular value distributions --- generalized locally Toeplitz sequences --- discretization of systems of differential equations --- higher-order finite element methods --- discontinuous Galerkin methods --- finite difference methods --- isogeometric analysis --- B-splines --- curl–curl operator --- time harmonic Maxwell’s equations and magnetostatic problems --- low rank completion --- matrix ODEs --- gradient system --- ordinary differential equations --- Runge–Kutta --- tree --- stump --- order --- elementary differential --- edge-histogram --- edge-preserving smoothing --- histogram specification --- initial value problems --- one-step methods --- Hermite–Obreshkov methods --- symplecticity --- B-splines --- BS methods --- hyperbolic partial differential equations --- high order discontinuous Galerkin finite element schemes --- shock waves and discontinuities --- vectorization and parallelization --- high performance computing --- generalized Schur algorithm --- null-space --- displacement rank --- structured matrices --- stochastic differential equations --- stochastic multistep methods --- stochastic Volterra integral equations --- mean-square stability --- asymptotic stability --- numerical analysis --- numerical methods --- scientific computing --- initial value problems --- one-step methods --- Hermite–Obreshkov methods --- symplecticity --- B-splines --- BS methods

Listing 1 - 9 of 9
Sort by