Search results: Found 2

Listing 1 - 2 of 2
Sort by
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics

Authors: ---
ISBN: 9783039214099 9783039214105 Year: Pages: 254 DOI: 10.3390/books978-3-03921-410-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The use of machine learning in mechanics is booming. Algorithms inspired by developments in the field of artificial intelligence today cover increasingly varied fields of application. This book illustrates recent results on coupling machine learning with computational mechanics, particularly for the construction of surrogate models or reduced order models. The articles contained in this compilation were presented at the EUROMECH Colloquium 597, « Reduced Order Modeling in Mechanics of Materials », held in Bad Herrenalb, Germany, from August 28th to August 31th 2018. In this book, Artificial Neural Networks are coupled to physics-based models. The tensor format of simulation data is exploited in surrogate models or for data pruning. Various reduced order models are proposed via machine learning strategies applied to simulation data. Since reduced order models have specific approximation errors, error estimators are also proposed in this book. The proposed numerical examples are very close to engineering problems. The reader would find this book to be a useful reference in identifying progress in machine learning and reduced order modeling for computational mechanics.

Keywords

parameter-dependent model --- surrogate modeling --- tensor-train decomposition --- gappy POD --- heterogeneous data --- elasto-viscoplasticity --- archive --- model reduction --- 3D reconstruction --- inverse problem plasticity --- data science --- model order reduction --- POD --- DEIM --- gappy POD --- GNAT --- ECSW --- empirical cubature --- hyper-reduction --- reduced integration domain --- computational homogenisation --- model order reduction (MOR) --- low-rank approximation --- proper generalised decomposition (PGD) --- PGD compression --- randomised SVD --- nonlinear material behaviour --- machine learning --- artificial neural networks --- computational homogenization --- nonlinear reduced order model --- elastoviscoplastic behavior --- nonlinear structural mechanics --- proper orthogonal decomposition --- empirical cubature method --- error indicator --- symplectic model order reduction --- proper symplectic decomposition (PSD) --- structure preservation of symplecticity --- Hamiltonian system --- reduced order modeling (ROM) --- proper orthogonal decomposition (POD) --- enhanced POD --- a priori enrichment --- modal analysis --- stabilization --- dynamic extrapolation --- computational homogenization --- large strain --- finite deformation --- geometric nonlinearity --- reduced basis --- reduced-order model --- sampling --- Hencky strain --- microstructure property linkage --- unsupervised machine learning --- supervised machine learning --- neural network --- snapshot proper orthogonal decomposition

Systems Analytics and Integration of Big Omics Data

Author:
ISBN: 9783039287444 / 9783039287451 Year: Pages: 202 DOI: 10.3390/books978-3-03928-745-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

A “genotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This “Big Data” is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of gene–environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome.

Keywords

tissue-specific expressed genes --- transcriptome --- tissue classification --- support vector machine --- feature selection --- bioinformatics pipelines --- algorithm development for network integration --- miRNA–gene expression networks --- multiomics integration --- network topology analysis --- candidate genes --- gene–environment interactions --- logic forest --- systemic lupus erythematosus --- Gene Ontology --- KEGG pathways --- enrichment analysis --- proteomic analysis --- plot visualization --- Alzheimer’s disease --- dementia --- cognitive impairment --- neurodegeneration --- Gene Ontology --- annotation --- biocuration --- amyloid-beta --- microtubule-associated protein tau --- artificial intelligence --- genotype --- phenotype --- deep phenotype --- data integration --- genomics --- phenomics --- precision medicine informatics --- epigenetics --- chromatin modification --- sequencing --- regulatory genomics --- disease variants --- machine learning --- multi-omics --- data integration --- curse of dimensionality --- heterogeneous data --- missing data --- class imbalance --- scalability --- genomics --- pharmacogenomics --- cell lines --- database --- drug sensitivity --- data integration --- omics data --- genomics --- RNA expression --- non-omics data --- clinical data --- epidemiological data --- challenges --- integrative analytics --- joint modeling --- multivariate analysis --- multivariate causal mediation --- distance correlation --- direct effect --- indirect effect --- causal inference --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (1)

english (1)


Year
From To Submit

2020 (1)

2019 (1)