Search results: Found 11

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
Protective and Detrimental Role of Heme Oxygenase-1

Author:
ISBN: 9783039218066 9783039218073 Year: Pages: 220 DOI: 10.3390/books978-3-03921-807-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The book “Protective and Detrimental Role of Heme Oxygenase-1”, includes a selection of original research papers and reviews aimed at understanding the dual role (protective and detrimental) of HO-1 and the involved signaling pathways. Original research papers and reviews aimed at the identification of natural molecules or new synthetic compounds able to modulate HO-1 activity/expression help make HO-1 a potential therapeutic target for the amelioration of various diseases.

Keywords

ferroptosis --- heme oxygenase-1 --- iron --- reactive oxygen species --- glutathione --- chemotherapy --- paracetamol --- Myristica fragrans kernels --- heme oxygenase 1 --- liver --- glucocorticoid receptor --- GR --- heme oxygenase 1 --- HO-1 --- prostate cancer --- ANTIGEN presenting cell --- tolerance --- Tet-ON system --- antigen presentation --- analgesia --- carbon monoxide --- heme oxygenase 1 --- inflammatory pain --- locus coeruleus --- nitric oxide --- bilirubin --- Gunn rats --- hyperbilirubinemia --- inflammation --- LPS --- NF-?B --- caloric restriction --- Sirtuin 1 --- Heme Oxygenase-1 --- PGC-1? --- cardiomyopathy --- diabetes mellitus --- Type 1 diabetes mellitus (T1D) --- Pancreatic oxidative damage --- Heme oxygenase-1 (HO-1) inducers --- Caffeic acid phenethyl ester (CAPE) --- Reactive oxygen species (ROS) --- Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) --- Inducible nitric oxide synthase (iNOS) --- Gamma-Glutamyl-Cysteine Ligase (GGCL) --- prostate cancer --- heme oxygenase --- metformin --- apoptosis --- ER stress --- HO-1 activity inhibitor --- carbon monoxide --- lung preservation --- ischemia–reperfusion injury --- high-pressure gas --- Colon cancer --- Betula etnensis Raf. --- oxidative stress --- heme oxigenase-1 --- ferroptosis --- thiol groups --- angiotensin II --- mineralocorticoid receptor --- heme oxygenase 1 --- sirtuin 1 --- adipocytes --- oxidative stress --- heme oxygenase-1 --- atherosclerosis --- coronary artery disease --- peripheral artery disease --- carotid plaque --- heme oxygenase --- endoplasmic reticulum stress --- hemoglobin --- heme --- n/a

The Importance of Iron in Pathophysiologic Conditions

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195244 Year: Pages: 479 DOI: 10.3389/978-2-88919-524-4 Language: English
Publisher: Frontiers Media SA
Subject: Therapeutics --- Science (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

The iron element (Fe) is strictly required for the survival of most forms of life, including bacteria, plants and humans. Fine-tuned regulatory mechanisms for Fe absorption, mobilization and recycling operate to maintain Fe homeostasis, the disruption of which leads to Fe overload or Fe depletion. Whereas the deleterious effect of Fe deficiency relies on reduced oxygen transport and diminished activity of Fe-dependent enzymes, the cytotoxicity induced by Fe overload is due to the ability of this metal to act as a pro-oxidant and catalyze the formation of highly reactive hydroxyl radicals via the Fenton chemistry. This results in unfettered oxidative stress generation that, by inducing protein, lipid and DNA oxidation, leads to Fe-mediated programmed cell death and organ dysfunction. Major and systemic Fe overloads occurring in hemochromatosis and Fe-loading anemias have been extensively studied. However, localized tissue Fe overload was recently associated to a variety of pathologies, such as infection, inflammation, cancer, cardiovascular and neurodegenerative disorders. In keeping with the existence of cross-regulatory interactions between Fe homeostasis and the pathophysiology of these diseases, further investigations on the mechanisms that provide cellular and systemic adaptation to tissue Fe overload are instrumental for future therapeutic approaches. Thus, we encourage our colleagues to submit original research papers, reviews, perspectives, methods and technology reports to contribute their findings to a current state of the art on a comprehensive overview of the importance of iron metabolism in pathophysiologic conditions.

Role of Natural Compounds in Inflammation and Inflammatory-Related Diseases

Author:
ISBN: 9783039215522 9783039215539 Year: Pages: 174 DOI: 10.3390/books978-3-03921-553-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The papers reported here will contribute to proposing new insights into the mechanisms of several conditions, as well as suggesting new diagnostic alternatives and therapeutic targets in widespread pathologies such inflammation and inflammatory-based diseases. The discovery of the new is, as always, anchored in recourse to the old.

Tea in Health and Disease

Author:
ISBN: 9783038979869 9783038979876 Year: Pages: 222 DOI: 10.3390/books978-3-03897-987-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Tea, made from the leaves of the Camellia senenisis plant, is the second most consumed beverage worldwide after water. Accumulating evidence from cellular, animal, epidemiological and clinical studies have linked tea consumption to various health benefits, such as chemoprevention of cancers, chronic inflammation, heart and liver diseases, diabetes, neurodegenerative diseases, etc. Although such health benefits have not been consistently observed in some intervention trials, positive results from clinical trials have provided direct evidence supporting the cancer-protective effect of green tea. In addition, numerous mechanisms of action have been suggested to contribute to tea’s disease-preventive effects. Furthermore, effects of the processing and storage of tea, as well as additives on tea’s properties have been investigated.

Anti-Photoagaing and Photo-Protective Compounds from Marine Organisms

Authors: ---
ISBN: 9783039280445 9783039280452 Year: Pages: 186 DOI: 10.3390/books978-3-03928-045-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Therapeutics --- Medicine (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue Book ""Anti-Photoagaing and Photo-Protective Compounds from Marine Organisms"" is aimed at collecting literature on the below-mentioned keyword topics, which can significantly increase our basic understanding of marine-derived compounds in cosmeceutical product development and increases the value of marine products at the industrial level.

Iron as Therapeutic Targets in Human Diseases Volume 1

Authors: --- ---
ISBN: 9783039280827 9783039280834 Year: Pages: 472 DOI: 10.3390/books978-3-03928-083-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions.

Keywords

cinnamic acid derivatives --- soybean seed ferritin --- iron release --- binding ability --- Fe2+-chelating activity --- reducibility --- adverse event profile --- anaemia --- bioengineering --- labile iron --- intravenous iron --- iron-carbohydrate complex --- iron processing --- iron metabolism --- infection --- innate immunity --- hepcidin --- ferritin --- anemia of inflammation --- pharmaceutical targets --- iron deficiency anemia --- nutrient iron --- oral iron therapy --- FeSO4 --- NaFeEDTA --- non-transferrin-bound iron (NTBI) --- developing countries --- Indonesia --- neurodegeneration --- mitochondria --- therapy --- heme --- haem --- Iron-sulfur --- Friedreich Ataxia --- Oxidative stress --- Iron chelators --- iron deficiency --- anemia --- cancer --- hepcidin --- patient blood management --- malaria --- iron deficiency --- hepcidin --- TNF --- children --- Africa --- Anemia --- iron deficiency --- oral iron salts --- intravenous iron --- Sucrosomial® iron --- M cells --- bioavailability --- tolerability --- efficacy --- iron --- gut microbiota --- iron supplementation --- iron transporters --- mucosal immunity --- SCFA --- intestinal inflammation --- inflammatory bowel disease (IBD) --- colorectal cancer --- oxidative stress --- anaemia --- cardiovascular disease --- chronic kidney disease --- IV iron therapy --- bone homeostasis --- iron overload --- iron deficiency --- osteoclast --- osteoblast --- osteoporosis --- neurodegeneration with brain iron accumulation --- iron chelation therapy --- multifunctional iron chelators --- fluorescent iron chelator --- 3-hydroxy-4-pyridinone --- fluorophore --- rhodamine --- membrane interactions --- bacteria --- antibacterial activity --- histidine --- iron --- anemia --- oxidative stress --- kidney --- chelation --- iron --- retina --- age-related macular degeneration (AMD) --- iron --- lipid --- obesity --- cancer --- neurodegeneration --- iron chelation --- phlebotomy --- NCOA4 --- ferritinophagy --- iron homeostasis --- erythropoiesis --- ferroptosis --- cancer --- Tfr2 --- iron metabolism --- hepcidin --- erythropoiesis --- SNC --- ferritin --- iron mobilization --- chaotropes --- flavin nucleotide --- electron transfer --- kinetics --- ferritin --- iron --- iron delivery --- nanotechnology --- nanocage --- drug delivery --- inflammation --- serum biomarker --- iron metabolism --- hepcidin --- ferroportin --- hemochromatosis --- anemia --- hepcidin --- iron deficiency anemia --- iron dextran --- neonatal period --- pig --- supplementation --- Alzheimer’s disease --- neuroinflammation --- neurodegeneration --- cytokines --- neuroimmune responses --- iron --- genetic hemochromatosis --- non transferrin bound iron --- hepcidin --- ferroportin --- venesections --- Anemia of chronic disease --- anemia of inflammation --- hepcidin --- anti-hepcidin therapy --- iron supplementation --- macrophage --- central nurse macrophage --- red pulp macrophage --- Kupffer cell --- iron metabolism --- erythropoiesis --- erythroblastic islands --- erythrophagocytosis --- inflammation --- iron homeostasis --- lung diseases --- oxygen sensing --- hypoxia --- ferritin --- hereditary hyperferritinemia --- hereditary hypoferritinemia --- iron metabolism --- cataracts syndrome --- neurodegenerative disease --- n/a --- iron --- neurodegeneration --- NBIA --- hepcidin --- iron --- lung --- acute lung injury --- COPD --- lung infection --- cystic fibrosis --- iron --- anaemia --- infection --- malaria --- immunity --- brain development --- growth --- microbiome --- hepcidin --- ferritin --- iron supplementation --- infants --- children --- low and middle income countries --- liver --- iron --- hepcidin --- Mek/Erk --- Hfe --- Bmp/Smad --- iron --- mycobacteria --- immunity --- Alzheimer’s disease --- iron homeostasis --- ferroptosis --- senescence --- chelators --- macrophages --- iron --- metabolism --- inflammation --- iron --- ferritin --- acute kidney injury --- chronic kidney disease --- vascular calcification --- iron --- hepcidin --- ferroportin --- Interleukin-6 --- infection --- rheumatoid arthritis --- iron homeostasis --- iron absorption --- non-haem iron --- flavonoids --- developmental --- iron deficiency anemia --- neonatal --- transferrin receptor --- treatment --- hemochromatosis --- HFE --- natural history --- T lymphocytes --- MHC --- CD8+ T cells --- prevention --- iron homeostasis --- hepcidin --- protein binding --- peritoneal dialysis --- iron --- hepcidin --- iron regulatory proteins --- cardiomyocyte --- chronic heart failure --- pulmonary arterial smooth muscle cells --- pulmonary arterial hypertension --- iron --- brain --- neurophysiology --- cognition --- social behavior --- didox --- iron chelators --- antitumor compound --- iron metabolism --- RRM2 --- SLC40A1 --- ferroportin --- iron overload --- non-HFE --- ferritin --- hemochromatosis --- iron --- chelation --- neurodegenerative diseases --- pituitary --- brain --- hemopexin --- heme homeostasis --- iron homeostasis --- hemolysis --- haptoglobin --- ferroptosis --- inflammation --- biomarker --- heme oxygenase --- liver --- microbiome --- trauma --- hemorrhage --- iron metabolism --- hepcidin --- iron homeostasis --- ferroportin --- n/a

Iron as Therapeutic Targets in Human Diseases Volume 2

Authors: --- ---
ISBN: 9783039281145 9783039281152 Year: Pages: 440 DOI: 10.3390/books978-3-03928-115-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions.

Keywords

cinnamic acid derivatives --- soybean seed ferritin --- iron release --- binding ability --- Fe2+-chelating activity --- reducibility --- adverse event profile --- anaemia --- bioengineering --- labile iron --- intravenous iron --- iron-carbohydrate complex --- iron processing --- iron metabolism --- infection --- innate immunity --- hepcidin --- ferritin --- anemia of inflammation --- pharmaceutical targets --- iron deficiency anemia --- nutrient iron --- oral iron therapy --- FeSO4 --- NaFeEDTA --- non-transferrin-bound iron (NTBI) --- developing countries --- Indonesia --- neurodegeneration --- mitochondria --- therapy --- heme --- haem --- Iron-sulfur --- Friedreich Ataxia --- Oxidative stress --- Iron chelators --- iron deficiency --- anemia --- cancer --- hepcidin --- patient blood management --- malaria --- iron deficiency --- hepcidin --- TNF --- children --- Africa --- Anemia --- iron deficiency --- oral iron salts --- intravenous iron --- Sucrosomial® iron --- M cells --- bioavailability --- tolerability --- efficacy --- iron --- gut microbiota --- iron supplementation --- iron transporters --- mucosal immunity --- SCFA --- intestinal inflammation --- inflammatory bowel disease (IBD) --- colorectal cancer --- oxidative stress --- anaemia --- cardiovascular disease --- chronic kidney disease --- IV iron therapy --- bone homeostasis --- iron overload --- iron deficiency --- osteoclast --- osteoblast --- osteoporosis --- neurodegeneration with brain iron accumulation --- iron chelation therapy --- multifunctional iron chelators --- fluorescent iron chelator --- 3-hydroxy-4-pyridinone --- fluorophore --- rhodamine --- membrane interactions --- bacteria --- antibacterial activity --- histidine --- iron --- anemia --- oxidative stress --- kidney --- chelation --- iron --- retina --- age-related macular degeneration (AMD) --- iron --- lipid --- obesity --- cancer --- neurodegeneration --- iron chelation --- phlebotomy --- NCOA4 --- ferritinophagy --- iron homeostasis --- erythropoiesis --- ferroptosis --- cancer --- Tfr2 --- iron metabolism --- hepcidin --- erythropoiesis --- SNC --- ferritin --- iron mobilization --- chaotropes --- flavin nucleotide --- electron transfer --- kinetics --- ferritin --- iron --- iron delivery --- nanotechnology --- nanocage --- drug delivery --- inflammation --- serum biomarker --- iron metabolism --- hepcidin --- ferroportin --- hemochromatosis --- anemia --- hepcidin --- iron deficiency anemia --- iron dextran --- neonatal period --- pig --- supplementation --- Alzheimer’s disease --- neuroinflammation --- neurodegeneration --- cytokines --- neuroimmune responses --- iron --- genetic hemochromatosis --- non transferrin bound iron --- hepcidin --- ferroportin --- venesections --- Anemia of chronic disease --- anemia of inflammation --- hepcidin --- anti-hepcidin therapy --- iron supplementation --- macrophage --- central nurse macrophage --- red pulp macrophage --- Kupffer cell --- iron metabolism --- erythropoiesis --- erythroblastic islands --- erythrophagocytosis --- inflammation --- iron homeostasis --- lung diseases --- oxygen sensing --- hypoxia --- ferritin --- hereditary hyperferritinemia --- hereditary hypoferritinemia --- iron metabolism --- cataracts syndrome --- neurodegenerative disease --- n/a --- iron --- neurodegeneration --- NBIA --- hepcidin --- iron --- lung --- acute lung injury --- COPD --- lung infection --- cystic fibrosis --- iron --- anaemia --- infection --- malaria --- immunity --- brain development --- growth --- microbiome --- hepcidin --- ferritin --- iron supplementation --- infants --- children --- low and middle income countries --- liver --- iron --- hepcidin --- Mek/Erk --- Hfe --- Bmp/Smad --- iron --- mycobacteria --- immunity --- Alzheimer’s disease --- iron homeostasis --- ferroptosis --- senescence --- chelators --- macrophages --- iron --- metabolism --- inflammation --- iron --- ferritin --- acute kidney injury --- chronic kidney disease --- vascular calcification --- iron --- hepcidin --- ferroportin --- Interleukin-6 --- infection --- rheumatoid arthritis --- iron homeostasis --- iron absorption --- non-haem iron --- flavonoids --- developmental --- iron deficiency anemia --- neonatal --- transferrin receptor --- treatment --- hemochromatosis --- HFE --- natural history --- T lymphocytes --- MHC --- CD8+ T cells --- prevention --- iron homeostasis --- hepcidin --- protein binding --- peritoneal dialysis --- iron --- hepcidin --- iron regulatory proteins --- cardiomyocyte --- chronic heart failure --- pulmonary arterial smooth muscle cells --- pulmonary arterial hypertension --- iron --- brain --- neurophysiology --- cognition --- social behavior --- didox --- iron chelators --- antitumor compound --- iron metabolism --- RRM2 --- SLC40A1 --- ferroportin --- iron overload --- non-HFE --- ferritin --- hemochromatosis --- iron --- chelation --- neurodegenerative diseases --- pituitary --- brain --- hemopexin --- heme homeostasis --- iron homeostasis --- hemolysis --- haptoglobin --- ferroptosis --- inflammation --- biomarker --- heme oxygenase --- liver --- microbiome --- trauma --- hemorrhage --- iron metabolism --- hepcidin --- iron homeostasis --- ferroportin --- n/a

Biomimetic Radical Chemistry and Applications

Author:
ISBN: 9783039283927 9783039283934 Year: Pages: 300 DOI: 10.3390/books978-3-03928-393-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Science (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The enormous importance of free radical chemistry for a variety of biological events, including ageing and inflammation, has attracted a strong interest in understanding the related mechanistic steps at the molecular level. Modelling the free radical chemical reactivity of biological systems is an important research area. When studying free-radical-based chemical mechanisms, biomimetic chemistry and the design of established biomimetic models come into play to perform experiments in a controlled environment that is suitably designed to be in strict connection with cellular conditions. This Special Issue gives the reader a wide overview of biomimetic radical chemistry, where molecular mechanisms have been defined and molecular libraries of products are developed to also be used as traces for the discovery of some relevant biological processes. Several subjects are presented, with 12 articles and 6 reviews written by specialists in the fields of DNA, proteins, lipids, biotechnological applications, and bioinspired synthesis, having “free radicals” as a common denominator.

Keywords

type 2 diabetes --- glycogen phosphorylase --- anomeric spironucleosides --- 1,6-dioxa-4-azaspiro[4.5]decane --- [1,5]-radical translocation --- DNA --- guanine quadruplexes --- radicals --- electron holes --- oxidative damage --- photo-ionization --- time-resolved spectroscopy --- inhomogeneous reactions --- radiosensitizers --- stationary radiolysis --- pulse radiolysis --- modified nucleosides --- cellular response --- liposomal somatostatin --- retarded delivery --- free radicals --- isomerization --- trans lipid --- peroxidation --- photolysis --- laser flash photolysis --- ?-radiolysis --- singlet oxygen --- nucleosides --- free radicals --- reaction mechanism --- catalase activity --- iron(IV)-oxo --- hydrogen peroxide --- oxidation --- kinetic studies --- gold nanoparticles --- albumin --- EPR spectroscopy --- Raman spectroscopy --- circular dichroism --- beta cells --- diabetes --- confocal microscopy --- lipidomics --- membrane fluidity maps --- cell micropolarity maps --- DNA damage --- 5?,8-cyclopurines --- 8-oxo-dG --- free radicals --- pulse radiolysis --- gamma radiolysis --- Fenton reaction --- oligonucleotides --- oxidative DNA damage --- DNA replication stress --- replication fork stalling --- genomic and epigenomic instability --- DNA methylation --- histone modifications --- miRNAs --- iron porphyrin --- heme --- ATRPase --- iron-mediated ATRP --- bio-mimicking catalyst --- biomimetic radical reaction --- bioinspired chemical catalysis --- protein labeling --- DNA oxidation --- DNA hole transfer --- DNA --- quantum dynamics --- electron transfer --- charge transfer --- radical reaction --- azidoalkylation --- carboazidation --- sulfones --- azides --- Julia–Kocienski olefination --- DNA damage --- copper --- chemical nuclease --- intercalation --- free radical oxidation --- protein stability --- therapeutic proteins --- thiyl radicals --- oxidation --- fragmentation --- cross-link --- 2-thiouracil --- radiosensitizers --- ?OH and ?N3 radicals --- 2c-3e S?S-bonded intermediates --- pulse radiolysis --- TD-DFT methods --- thiobases --- nucleobase derivatives --- reactive aldehydes --- hydroxynonenal --- oxononenal --- free fatty acids --- mitochondrial uncoupling protein --- lipid bilayer membranes

Roles and Functions of ROS and RNS in Cellular Physiology and Pathology

Author:
ISBN: 9783039287826 / 9783039287833 Year: Pages: 230 DOI: 10.3390/books978-3-03928-783-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Pathology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Our common knowledge on oxidative stress has evolved substantially over the years and has been mostly focused on the fundamental chemical reactions and the most relevant chemical species involved in the human pathophysiology of oxidative stress-associated diseases. Thus, reactive oxygen species and reactive nitrogen species (ROS and RNS) were identified as the key players initiating, mediating, and regulating the cellular and biochemical complexity of oxidative stress either as physiological (acting pro-hormetic) or as pathogenic (causing destructive vicious circle) process. The papers published in this particular Special Issue of the Cells demonstrate the impressive pathophysiological relevance of ROS and RNS in a range of contexts, including the relevance of second messengers of free radicals like 4-hydroxynonenal, allowing us to assume that even more detailed mechanisms of their positive and negative effects lie in wait, and should assist in better monitoring of the major modern diseases and the development of advanced integrative biomedicine treatments.

Keywords

human neuroblastoma SH-SY5Y cells --- TRPM2 channel --- ROS --- neuronal cell death --- histamine --- calcium --- endothelial cells --- NADPH-oxidase --- VAS2870 --- von Willebrand factor --- aorta --- relaxation --- reactive oxygen species (ROS) --- oxidative stress --- lipid peroxidation --- acrolein --- 4-hydroxynonenal (4-HNE) --- oxidative burst --- granulocytes --- cancer cells --- growth control --- cancer regression --- hydroxyapatite-based biomaterials --- osteoblast growth --- redox balance --- vitamins --- lipid peroxidation --- 4-hydroxynonenal --- oxidative stress --- oxidative stress --- nuclear factor erythroid 2–related factor 2 --- heme-oxygenase-1 --- macrophages --- plaque vulnerability --- optical coherence tomography --- reactive oxygen species --- free radicals --- DNA damage --- cyclopurines --- DNA and RNA polymerases --- nucleotide excision repair --- LC-MS/MS --- xeroderma pigmentosum --- cancer --- intermittent hypoxia --- mitochondria --- Ca2+, ROS --- antioxidant --- free radicals --- antimicrobial --- toll-like receptors --- cannabidiol --- UV radiation --- keratinocytes --- antioxidants --- inflammation --- intracellular signaling --- Nrf2 --- NF?B --- glucose deprivation --- glutamine deprivation --- viability --- proliferation --- ROS --- NRF2-NQO1 axis --- IMR-90 --- NQO1 transcript variants --- rs1800566 --- TP53 mutation --- oxidative stress --- MFN2 --- mitochondria --- fusion/fission --- oxidative stress --- blood–brain barrier --- bEnd5 --- bEnd.3 --- glutathione --- viability --- free radicals --- redox balance --- cell signaling --- growth --- toxicity --- antioxidants --- oxidative homeostasis --- oxidative metabolism of the cells --- pathophysiology of oxidative stress

Plant Natural Products for Human Health

Authors: ---
ISBN: 9783038977124 Year: Pages: 514 DOI: 10.3390/books978-3-03897-713-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Therapeutics --- Medicine (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Plants have served mankind as an important source of foods and medicines. While we all consume plants and their products for nutritional support, a majority of the world population also rely on botanical remedies to meet their health needs, either as their own “traditional medicine” or as “complementary and alternative medicine”. From a pharmaceutical point of view, many compounds obtained from plant sources have long been known to possess bio/pharmacological activities, and historically, plants have yielded many important drugs for human use, from morphine discovered in the early nineteenth century to the more recent paclitaxel and artemisinin. Today, we are witnessing a global resurgence in interest and use of plant-based therapies and botanical products, and natural products remain an important and viable source of lead compounds in many drug discovery programs.This Special Issue on “Plant Natural Products for Human Health” compiles a series of scientific reports to demonstrate the medicinal potentials of plant natural products. It covers a range of disease targets, such as diabetes, inflammation, cancer, neurological disease, cardiovascular disease, liver damage, bacterial, and fungus infection and malarial. These papers provide important insights into the current state of research on drug discovery and new techniques. It is hoped that this Special Issue will serve as a timely reference for researchers and scholars who are interested in the discovery of potentially useful molecules from plant sources for health-related applications.

Keywords

heat-process --- onion --- calorie restriction --- Amadori rearrangement compounds --- hyperglycemia --- A549 cells --- hinokitiol --- MMPs --- p53/Bax --- antioxidant enzymes --- caspases --- migration --- cannabinoid type 1 receptor --- endoplasmic reticulum stress --- gluconeogenesis --- gomisin N --- lipogenesis --- insulin resistance --- garlic --- ischemia --- heme oxygenase --- reperfusion --- heart --- Keap1 --- Nrf2 --- Neuroprotective --- PC12 cells --- PhGs --- anti-malaria activity --- plants --- natural products --- ethnopharmacology --- Plasmodium parasites --- copaiba --- oleoresin --- essential oil --- sesquiterpenoids --- diterpenoids --- biological activity --- molecular targets --- Astragali Radix --- astragaloside IV --- genistein --- mitochondrial bioenergetics --- oxygen consumption rate --- natural products --- drug design and development --- innovation --- automation --- computational softwares --- bioinformatics --- precision medicine --- omics --- global health --- sweet orange --- bitter orange --- neroli --- orange petitgrain --- mandarin --- lemon --- lime --- grapefruit --- bergamot --- yuzu --- kumquat --- cannabigerol --- Cannabis sativa --- neuroinflammation --- oxidative stress --- phytocannabinoid --- iridoids --- nuclear factor-kappaB --- mitogen-activated protein kinase --- anti-inflammation --- Ziziphus jujuba --- triterpenic acids --- pharmacokinetic study --- acute liver injury --- A? --- AD --- lychee seed --- neuroinflammation --- catechin --- procyanidin A2 --- apoptosis --- cinnamamides --- antistaphylococcal activity --- time-kill assay --- biofilm --- antitubercular activity --- MTT assay --- antifungal activity --- PET inhibition --- toxicity --- structure–activity relationship --- bleeding time --- flavonoid --- morin hydrate --- OH· free radical --- platelet activation --- protein kinase --- thromboembolism --- Glycyrrhiza uralensis --- prenylated flavonoids --- antiproliferation --- differentiation --- melanoma cell --- adjuvant-induced arthritis --- arthritis --- celastrol --- curcumin --- dietary supplements --- EGCG --- green tea --- inflammation --- liposomes --- microbiome --- nanoparticles --- natural products --- resveratrol --- rheumatoid arthritis --- targeted delivery --- traditional medicine --- Tripterygium wilfordii --- triptolide --- Penthorum chinense Pursh --- NAFLD --- hepatic steatosis --- flavonoids --- SIRT1 --- AMPK --- dihydromyricetin --- myocardial hypertrophy --- oxidative stress --- sirtuin 3 --- ginseng --- human-hair-follicle dermal papilla cells --- WNT/?-catenin --- Shh/Gli --- TGF-? --- BMP/Smad --- mouse-hair growth --- Panax notoginseng saponins --- aspirin --- HepaRG cells --- herb–drug interactions --- P. eryngii --- glucans --- inflammation --- inflammatory bowel disease --- medicinal plants --- phytochemicals --- scoulerine --- bergapten --- immunomodulator --- adjuvant --- cytoxicity --- dendritic cells --- immune modulation --- APAP --- acetaminophen --- hepatotoxicity --- hpatoprotection --- paracetamol --- animals --- preclinical studies --- natural products --- small molecules --- phytochemicals --- plants --- fucoidan --- acetaminophen --- Nrf2 --- oxidative stress --- hepatotoxicity --- plant natural product --- drug discovery --- human health

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
Narrow your search