Search results: Found 3

Listing 1 - 3 of 3
Sort by
Energy and Technical Building Systems - Scientific and Technological Advances

Authors: ---
ISBN: 9783039281787 9783039281794 Year: Pages: 220 DOI: 10.3390/books978-3-03928-179-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Future buildings require not only energy efficiency but also proper building automation and control system functionalities in order to respond to the needs of occupants and energy grids. These development paths require a focus on occupant needs such as good indoor climate, easy operability, and monitoring. Another area to be tackled is energy flexibility, which is needed to make buildings responsive to the price signals of electricity grids with increasing amounts of fluctuating renewable energy generation installed both in central grids and at building sites. This Special Issue is dedicated to HVAC systems, load shifting, indoor climate, and energy and ventilation performance analyses in buildings. All these topics are important for improving the energy performance of new and renovated buildings within the roadmap of low energy and nearly zero energy buildings. To improve energy performance and, at the same time, occupant comfort and wellbeing, new technical solutions are required. Occupancy patterns and recognition, intelligent building management, demand response and performance of heating, cooling and ventilation systems are some common keywords in the articles of this Special Issue contributing to future highly performing buildings with reliable operation.

Keywords

ice rinks --- air distribution solutions --- indoor air temperature gradient --- air handling unit configuration --- building energy efficiency --- building performance simulation --- energy and HVAC-systems in buildings --- energy piles --- validation --- floor slab heat loss --- energy --- computer simulations --- predictive rule-based control --- hourly CO2eq. intensity --- demand response --- energy flexibility --- n/a --- indoor environment quality --- thermal comfort --- personalized ventilation --- fuzzy logic --- environmental impact --- device efficiency --- air pollutant --- multi-households --- solid oxide fuel cell cogeneration system --- end-use energy consumption --- heating --- ventilation and air conditioning (HVAC) --- intelligent system management --- lighting electrical energy --- national electricity grid --- office building --- Photovoltaic system --- simulation --- Simulink® --- deep renovation --- energy retrofit --- detached house --- multi-objective optimization --- greenhouse gas emissions --- heat pump --- genetic algorithm --- occupancy density --- moisture conditions --- energy use --- indoor air quality --- ventilation rate --- KNX --- Neural Network (NN) --- Multilayer Perceptron (MLP) --- Random Tree (RT) --- Linear Regression (LR) --- Cloud Computing (CC) --- Internet of Things (IoT) --- LMS (Least Mean Squares) Adaptive filter (AF) --- gateway --- monitoring --- occupancy --- prediction --- IBM SPSS --- Intelligent Buildings (IB) --- energy savings

Recent Advances in Urban Ventilation Assessment and Flow Modelling

Authors: ---
ISBN: 9783038978060 9783038978077 Year: Pages: 448 DOI: 10.3390/books978-3-03897-807-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

This book contains twenty-one original papers and one review paper published by internationally recognized experts in the Atmosphere Special Issue ""Recent Advances in Urban Ventilation Assessment and Flow Modelling"", years 2017–2019. The Special Issue includes contributions on recent experimental and modelling works, techniques, and developments mainly tailored to the assessment of urban ventilation on flow and pollutant dispersion in cities. The study of ventilation is of critical importance, as it addresses the capacity with which a built urban structure is capable of replacing the polluted air with ambient fresh air. Here, ventilation is recognized as a transport process that improves local microclimate and air quality and closely relates to the term “breathability”. The efficiency with which street canyon ventilation occurs depends on the complex interaction between the atmospheric boundary layer flow and the local urban morphology.The individual contributions to this Issue are summarized and categorized into four broad topics: (1) outdoor ventilation efficiency and application/development of ventilation indices, (2) relationship between indoor and outdoor ventilation, (3) effects of urban morphology and obstacles to ventilation, and (4) ventilation modelling in realistic urban districts. The results and approaches presented and proposed will be of great interest to experimentalists and modelers, and may constitute a starting point for the improvement of numerical simulations of flow and pollutant dispersion in the urban environment, for the development of simulation tools, and for the implementation of mitigation strategies.

Keywords

street canyon --- seasonal variation --- air flow --- pollutant dispersion --- pollutant removal --- natural ventilation --- residential wind environments --- building arrangements --- space pattern --- ventilation efficiency --- CFD simulation --- air change rate (ACH) --- flow and turbulence profiles --- hypothetical urban areas --- street-level ventilation --- ventilation assessment --- wind-tunnel dataset --- street vegetation --- CFD --- aerodynamic and deposition --- tree scenarios --- urban planning --- indoor-outdoor --- mass concentration --- nanoparticles --- particle number concentration (PNC) --- PM10 --- PM2.5 --- sampling --- Total Suspended Particles (TSP) --- ultrafine particles (UFP) --- urban street canyon --- wind enhancement --- architectural intervention --- water channel experiment --- CFD simulation --- passive ventilation --- street canyon --- computational fluid dynamics (CFD) --- ventilation effectiveness --- the age of air --- convective boundary layer --- LES --- street-level ventilation --- small open space --- air change rate per hour (ACH) --- concentration decay method --- urban age of air --- computational fluid dynamic (CFD) simulation --- natural ventilation --- residential building --- climate zone --- thermal comfort --- natural ventilation hour --- Japan cities --- building energy use --- inter-building effect --- highly-reflective building envelope --- BEopt analysis --- source apportionment --- data assimilation --- urban air quality modelling --- wind environment --- Natural Ventilation Potential (NVP) --- PM2.5 --- building–tree grouping patterns --- Computational Fluid Dynamics (CFD) --- LES --- ventilation --- urban planning --- dispersion --- air quality --- street canyon --- traffic tidal flow --- numerical simulation --- vehicular pollution --- non-uniform distribution of the pollution source --- on-road air quality --- traffic composition --- high emitting vehicles --- street canyon --- mobile laboratory --- CFD model --- heat loss --- optimisation --- residential building --- air quality --- carbon dioxide concentration --- ventilation system --- wind pressure coefficient --- airflow network --- multiple linear regression --- natural ventilation --- urban layout --- surrogate model --- schematic urban environment --- wind tunnel --- LES --- validation --- street canyon --- coherent structures --- road tunnel --- natural ventilation --- wind catcher --- intake fraction --- street canyon --- CFD --- Large Eddy Simulation (LES) --- urban air quality --- pedestrian exposure --- concentration fluctuation --- outdoor ventilation --- urban morphology --- building site coverage --- ventilation efficiency --- n/a

Human Health Engineering

Author:
ISBN: 9783039284085 9783039284092 Year: Pages: 428 DOI: 10.3390/books978-3-03928-409-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

In this Special Issue on human health engineering, we invited submissions exploring recent contributions to the field of human health engineering, which is the technology used for monitoring the physical or mental health status of individuals in a variety of applications. Contributions focused on sensors, wearable hardware, algorithms, or integrated monitoring systems. We organized the different papers according to their contributions to the main aspects of the monitoring and control engineering scheme applied to human health applications, including papers focusing on measuring/sensing physiological variables, contributions describing research on the modelling of biological signals, papers highlighting health monitoring applications, and finally examples of control applications for human health. In comparison to biomedical engineering, the field of human health engineering also covers applications on healthy humans (e.g., sports, sleep, and stress) and thus not only contributes to develop technology for curing patients or supporting chronically ill people, but also more generally for disease prevention and optimizing human well-being.

Keywords

artefact correction --- head-shaped phantom --- spherical phantom --- gradient artefact --- simultaneous EEG–fMRI --- calcaneal spur --- pain minimum compressive pressure --- contour of shoe insole --- insole foot area --- health information --- interface formats --- older adults --- wearable devices --- usability --- emotional reaction --- ADHD --- screening --- machine learning --- SVM --- children --- novel --- nomophobia --- anxiety --- smartphone --- internet --- cyberaddiction --- new technologies --- chronic obstructive pulmonary disease --- COPD --- oxygen uptake --- VO2 --- kinetics --- exercise testing --- rehabilitation robotics --- soft walking assistive robot --- long-term effect --- gait characteristics --- elderly person --- blood pressure estimation --- photoplethysmogram --- pulse wave --- pulse oximeter --- wearable device --- Kano-TRIZ design theory --- quality function deployment --- four-wheeled rollator --- model predictive control --- orthosis control --- muscle modeling --- arm --- Hill muscle --- swarm optimization --- pneumatic artificial muscle --- sliding mode control --- fractional calculus --- antagonistic actuator --- weight loss --- mHealth --- dynamic model --- adaptive control --- spirometry --- airflow limitation --- airway resistance --- specific airway conductance --- COPD --- body-plethysmography --- forced expiration --- alveolar pressure --- emphysema --- computed tomography --- air-trapping --- thermal comfort --- bicycle helmet --- smart wearables --- adaptive model --- streaming data --- thermal sensation --- adaptive model --- personalized model --- machine leaning --- support-vector-machine --- adaptive control --- streaming algorithm --- thermoregulation --- homeostasis --- cold-induced-vasodilation --- cold-induced-vasoconstriction --- control system --- dynamic modelling --- powered mobility --- dyskinetic cerebral palsy --- dystonia --- choreoathetosis --- mobility scale --- movement disorder --- children --- youth --- reliability --- validity --- feature engineering --- intensive care unit --- mortality prediction --- hard-margin support vector machines --- driver drowsiness --- thermoregulation --- distal skin temperature --- decision tree --- heart model --- Van der Pol --- FitzHugh–Nagumo --- relaxation oscillator --- electrocardiographic signal --- bicycle helmets --- thermal manikin --- convective and evaporative heat loss --- zonal performance characteristics --- freestyle skiing aerials --- knee joint --- ligament --- finite element simulation --- lifting technique --- stoop --- squat --- work-related musculoskeletal disorders --- musculoskeletal modeling --- spine --- shoulder --- back loading --- harmonization --- meta-analysis --- missing data --- multiple imputations --- information technology --- remoteness --- cohort studies --- control parameter reference --- stance assistance --- magnetorheological brake --- body mass index --- walking speed --- ankle torque --- ankle angular velocity --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

english (3)


Year
From To Submit

2020 (2)

2019 (1)