Search results: Found 9

Listing 1 - 9 of 9
Sort by
Wavelet Analysis on the Sphere. Spheroidal Wavelets

Authors: --- ---
ISBN: 9783110481884 Year: Pages: 144 DOI: 10.1515/9783110481884 Language: English
Publisher: De Gruyter
Subject: Mathematics
Added to DOAB on : 2020-05-19 12:37:27
License:

Loading...
Export citation

Choose an application

Abstract

The goal of this monograph is to develop the theory of wavelet harmonic analysis on the sphere. By starting with orthogonal polynomials and functional Hilbert spaces on the sphere, the foundations are laid for the study of spherical harmonics such as zonal functions. The book also discusses the construction of wavelet bases using special functions, especially Bessel, Hermite, Tchebychev, and Gegenbauer polynomials.

Nanogrids, Microgrids, and the Internet of Things (IoT): Towards the Digital Energy Network

Author:
ISBN: 9783039217946 9783039217953 Year: Pages: 128 DOI: 10.3390/books978-3-03921-795-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Driven by new regulations, new market structures, and new energy resources, the smart grid has been the trigger for profound changes in the way that electricity is generated, distributed, managed, and consumed. The smart grid has raised the traditional power grid by using a two-way electricity and information flow to create an advanced, automated power supply network. However, these pioneering smart grid technologies must grow to adapt to the demands of the current digital society. In today’s digital landscape, we can access feasible data and knowledge that were merely inconceivable. This Special Issue aims to address the landscape in which smart grids are progressing, due to the advent of pervasive technologies like the Internet of Things (IoT). It will be the advanced exploitation of the massive amounts of data generated from (low-cost) IoT sensors that will become the main driver to evolve the concept of the smart grid, currently focused on infrastructure, towards the digital energy network paradigm, focused on service. Furthermore, collective intelligence will improve the processes of decision making and empower citizens. Original manuscripts focusing on state-of-the-art IoT networking and communications, M2M communications, cyberphysical system architectures, big data analytics or cloud computing applied to digital energy platforms, including design methodologies and practical implementation aspects, are welcome.

Distributed Energy Storage Devices in Smart Grids

Authors: --- ---
ISBN: 9783039284344 / 9783039284351 Year: Pages: 148 DOI: 10.3390/books978-3-03928-435-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Energy storage systems have been recognized as viable solutions for implementing the smart grid paradigm, but have created challenges in terms of load levelling, integrating renewable and intermittent sources, voltage and frequency regulation, grid resiliency, improving power quality and reliability, reducing energy import during peak demand periods, and so on. In particular, distributed energy storage addresses a wide range of the above potential issues, and it is gaining attention from customers, utilities, and regulators. Distributed energy storage has considerable potential for reducing costs and improving the quality of electric services. However, installation costs and lifespan are the main drawbacks to the wide diffusion of this technology. In this context, a serious challenge is the adoption of new techniques and strategies for the optimal planning, control, and management of grids that include distributed energy storage devices. Regulatory guidance and proactive policies are urgently needed to ensure a smooth rollout of this technology. This book collects recent contributions of methodologies applied to the integration of distributed energy storage devices in smart power systems. Several areas of research (optimal siting and sizing of energy storage systems, adaption of energy storage systems to load leveling and harmonic compensation, integration for electric vehicles, and optimal control systems) are investigated in the contributions collected in this book.

Power Electronics and Power Quality

Author:
ISBN: 9783039283583 / 9783039283590 Year: Pages: 336 DOI: 10.3390/books978-3-03928-359-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Power quality (PQ) is receiving more and more attention from consumers, distribution system operators, transmission system operators, and other entities related to electrical power systems. As PQ problems have direct implications for business productivity, causing high economic losses, the research and development monitoring technologies and power electronics solutions that ensure the PQ of the power systems are matters of utmost importance. This book is a collection of high quality papers published in the “Power Electronics and Power Quality” Special Issue of the journal Energies. It reflects on the latest investigations and the new trends in this field.

Keywords

high speed maglev --- long-stator synchronous motor --- propulsion inverter control system position estimator --- distorted grid conditions --- SGDFT --- Lagrange-interpolation method --- frequency adaption --- SC --- primary neutral integrity --- multi-grounded neutral (MGN) system --- neutral integrity detection --- passive method --- computer simulation --- modeling --- microinverter --- photovoltaic systems --- state-space model --- power inverter --- voltage source inverter --- four-leg inverter --- cost-effectiveness --- current control --- pulse width modulation --- indirect matrix converter (IMC) --- input filter --- input power factor --- matrix converter (MC) --- space vector modulation (SVM) --- power quality --- microgrid (MG) --- renewable power generation --- superconducting magnetic energy storage (SMES) --- energy shaping passivity (ESP)-based control --- power semiconductor device --- temperature --- switching transients --- variation in voltage --- half-bridge inverters --- digital control --- hysteresis current control --- switching frequency --- optimization --- static var compensator --- series active filter --- thyristor-controlled reactor --- phase-leading capacitor --- hybrid static var compensator --- static synchronous compensator --- hybrid active filter --- Pulse Width Modulation (PWM) --- Field Programmable Gate Array (FPGA) --- Total Harmonic Distortion (THD) --- harmonics --- event detection --- power quality --- histogram --- machine learning --- wavelet transform --- continuous particle swarm optimization (CPSO) --- overcurrent relay coordination (OCR) --- time multiplier setting (TMS) --- power system protection --- protection relay --- Simulink --- Matlab --- Omicron CMC 256plus --- power quality --- enerlyzer --- comtrade --- distance protection --- Shunt Active Power Filter --- digital control --- harmonics --- multilevel converter --- power quality --- p-q theory --- robust control --- DC-DC converter --- constant power load --- low voltage direct-current residential microgrid --- Multiterminal HVDC --- CSC --- FBMMC --- MMC --- Hybrid HVDC --- Full-bridge --- power control --- voltage control --- DC short-circuit handling --- hybrid power filter --- power quality --- reactive power

Sustainable Energy Systems: From Primary to End-Use

Authors: --- ---
ISBN: 9783039210961 9783039210978 Year: Pages: 314 DOI: 10.3390/books978-3-03921-097-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book focuses on sustainable energy systems. While several innovative and alternative concepts are presented, the topics of energy policy, life cycle assessment, thermal energy, and renewable energy also play a major role. Models on various temporal and geographical scales are developed to understand the conditions of technical as well as organizational change. New methods of modeling, which can fulfil technical and physical boundary conditions and nevertheless consider economic environmental and social aspects, are also developed.

Keywords

Active Disturbance Rejection Control --- Probabilistic Robustness --- Monte Carlo --- secondary air regulation --- areal grey relational analysis --- fuzzy rough set --- game theory --- AHP --- uncertainty analysis --- coal-fired power unit --- renewable energy --- biomass --- torrefaction --- grindability --- rotary reactor --- generation system scheduling --- integrated model --- basic plan for long-term electricity supply and demand --- forecasting model for electricity demand --- biomass --- Pinus pinaster --- fuel --- heating value --- fuelwood value index --- energy density --- ash recovery --- peach --- Energy Life-Cycle Assessment --- post-harvest --- fuzzy logic control --- artificial neural networks control --- tidal stream generator --- swell effect disturbance --- doubly fed induction generator --- maximum power point tracking --- capacity investment --- market power --- wind resources --- dynamic planning --- stochastic approach --- levelized cost of energy --- photovoltaic with energy storage system --- HOMER simulation --- LCOE comparison --- sensitivity analysis --- transient impact --- renewable energy source penetration --- power system stability --- robust optimization --- renewable energy --- flexibility --- deficit --- uncertainty --- flexible resource --- energy storage systems --- active power harmonics filter --- electrostatic devices --- hysteresis switching --- op-amp --- power electronics --- power supply reliability --- electricity --- manufacturing industry --- choice experiment --- willingness to pay --- nexus concept --- energy modelling --- resource efficiency --- renewable energy --- low-carbon economy --- forecasting --- multilayer perception --- photovoltaic --- sustainable energy --- pseudo-Huber loss --- energy from biomass --- textile industrial sector --- alternative energy --- SWOT analysis --- energy costs --- Internet of Things --- thermodynamic cycle concepts --- sustainability --- modified cycle concepts --- efficiency --- energy systems --- renewable energies --- wind power plants --- hollow rollers --- large bearings

Synthesis and Modification of Nanostructured Thin Films

Author:
ISBN: 9783039284542 9783039284559 Year: Pages: 276 DOI: 10.3390/books978-3-03928-455-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue “Synthesis and Modification of Nanostructured Thin Films” highlights the recent progress in thin film synthesis/modification and characterization. New methods are reviewed for the synthesis and/or modification of thin films based on laser, magnetron, chemical, and other techniques. The obtained thin nanostructures are characterized by complex and complementary techniques. We think that most of proposed methods can be directly applied in production, but some others still need further elaboration for long-term prospective applications in lasers, optics, materials, electronics, informatics, telecommunications, biology, medicine, and probably many other domains. The Guest Editor and the MDPI staff are therefore pleased to offer this Special Issue to interested readers, including graduate and PhD students as well as postdoctoral researchers, but also to the entire community interested in the field of nanomaterials. We share the conviction that this can serve as a useful tool for updating the literature, but also to aid in the conception of new production and/or research programs. There is plenty of room for further dedicated R&D advances based on new instruments and materials under development.

Keywords

AlGaN --- nanopatterned sapphire substrate --- hydride vapor phase epitaxy --- stress --- transmission electron microscopy --- copper nanowires --- CuNWs --- degradation --- encapsulation --- PDMS --- PMMA --- solution-based --- transparent electrode --- photonic crystal fiber --- demultiplexer --- dense wavelength division multiplexing --- lithium niobate --- waveguide --- photonic integrated circuit --- propagation loss --- optical lithography --- chemo-mechanical polishing --- gold thin film --- nonlinear absorption --- nonlinear refraction --- transient absorption --- nanoparticles --- high-order harmonics --- electroluminescence --- nanolaminate --- Al2O3 --- Tm2O3 --- atomic layer deposition --- germanium --- DLC --- doped biomaterials --- pulsed laser deposition --- reactive oxygen species --- apoptosis --- cytotoxicity --- titanium film --- interlayer --- cohesion --- residual stress --- nano-indenter --- nanocrystal --- CdTe --- Cu-doped --- ZnTe --- solar cells --- solution processed --- pulsed laser deposition --- chalcogenide thin films --- Raman spectroscopy --- spectroscopic ellipsometry --- noble metal nanoparticles --- pulsed laser ablation --- surface enhanced Raman spectroscopy --- antiepileptic drugs --- Zn2+ substituted Coll-CaPs biomimetic layers --- MAPLE --- spin coating --- dye-sensitized solar cells --- photovoltaic conversion efficiency --- TiO2 thin films --- pulsed laser deposition --- DLC bio-functionality --- silicon doping --- diffusion barrier --- biocompatibility --- proliferation improvement --- endothelial cells --- ZnO nanofilms --- SHG --- Ga doping --- polarization angle --- Cu2MgxZn1?xSnS4 --- thin films --- photoelectric performance --- sol–gel --- sulfuration treatment --- solar cell --- nanomaterial --- zinc oxide --- barium titanate --- composite --- ethylene vinyl acetate --- elastic modulus --- toughness --- flexural rigidity --- radiopacity --- piezoelectricity --- laser surface texturing --- laser-induced periodic surface structures --- LIPSS --- silicon --- PTFE --- friction --- n/a

Analysis for Power Quality Monitoring

Authors: ---
ISBN: 9783039281107 / 9783039281114 Year: Pages: 210 DOI: 10.3390/books978-3-03928-111-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

We are immersed in the so-called digital energy network, continuously introducing new technological advances for a better way of life. Numerous emerging words are in the spotlight, namely: Internet of Things (IoT), Big Data, Smart Cities, Smart Grid, Industry 4.0, etc. To achieve this formidable goal, systems should work more efficiently, and this fact inevitably leads to power quality (PQ) assurance. Apart from its economic losses, a bad PQ implies serious risks for machines, and consequently for people. Many researchers are endeavoring to develop new analysis techniques, instruments, measurement methods, and new indices and norms that match and fulfil the requirements regarding the current operation of the electrical network. This book offers a compilation of the some recent advances in this field. The chapters range from computing issues to technological implementations, going through event detection strategies and new indices and measurement methods that contribute significantly to the advancement of PQ analysis. Experiments have been developed within the frames of research units and projects, and deal with real data from industry and public buildings. Human beings have an unavoidable commitment with sustainability, which implies adapting PQ monitoring techniques to our dynamic world, defining a digital and smart concept of quality for electricity.

Keywords

power system measurements --- dynamic phasor estimation --- Kalman filters --- phasor measurement --- power quality --- signal waveform compression --- higher-order statistics (HOS) --- power quality (PQ) --- computational solutions for advanced metering infrastructure (AMI) --- smart grid (SG) applications --- harmonics --- constant amplitude trend --- fourth-order statistics --- detection --- spectral kurtosis --- low-voltage DC networks --- power quality disturbances --- power quality monitoring --- DC power quality indices --- voltage ripple --- reconfigurable computing --- FPGA --- power quality --- spectral kurtosis --- digital signal processing --- embedded system --- power quality disturbance --- convolution neural network --- improved principal component analysis --- wind-grid distribution --- power quality (PQ) --- embedded microcontroller --- low cost monitor --- sensor node --- wireless sensor network --- IoT --- RMS voltage estimation --- low computational cost --- limited resources hardware --- power event detection --- energizing warning --- power quality --- voltage sags --- islanding operation --- induction machines --- modelling --- distribution networks --- power quality --- phasor measurement units --- voltage fluctuations --- flicker --- modulation --- power distribution systems --- smart grids --- dense-mesh topology --- municipal distribution network --- smart grid --- power quality monitor --- long-term --- operation analysis --- power quality (PQ) --- PQ indices and thresholds --- reliability --- sensors and instruments for PQ --- big data --- machine learning --- soft computing --- statistical signal processing --- data scalability --- data compression

Applications of Power Electronics

Authors: --- ---
ISBN: 9783038979746 9783038979753 Year: Volume: 1 Pages: 476 DOI: 10.3390/books978-3-03897-975-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Applications of Power Electronics

Authors: --- ---
ISBN: 9783039210206 9783039210213 Year: Volume: 2 Pages: 500 DOI: 10.3390/books978-3-03921-021-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Listing 1 - 9 of 9
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (8)

De Gruyter (1)


License

CC by-nc-nd (9)


Language

english (6)

eng (3)


Year
From To Submit

2020 (4)

2019 (4)

2017 (1)