Search results: Found 3

Listing 1 - 3 of 3
Sort by
Grappling with the Multifaceted World of the DNA Damage Response

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450572 Year: Pages: 306 DOI: 10.3389/978-2-88945-057-2 Language: English
Publisher: Frontiers Media SA
Subject: Genetics --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

DNA damage is a major threat to genomic integrity and cell survival. It can arise both spontaneously and in response to exogenous agents. DNA damage can attack most parts of the DNA structure, ranging from minor and major chemical modifications, to single-strand breaks (SSBs) and gaps, to full double-strand breaks (DSBs). If DNA injuries are mis-repaired or unrepaired, they may ultimately result in mutations or wider-scale genome aberrations that threaten cell homeostasis. Consequently, the cells elicit an elaborate signalling network, known as DNA damage response (DDR), to detect and repair these cytotoxic lesions. This Research Topic was aimed at comprehensive investigations of basic and novel mechanisms that underlie the DNA damage response in eukaryotes.DNA damage is a major threat to genomic integrity and cell survival. It can arise both spontaneously and in response to exogenous agents. DNA damage can attack most parts of the DNA structure, ranging from minor and major chemical modifications, to single-strand breaks (SSBs) and gaps, to full double-strand breaks (DSBs). If DNA injuries are mis-repaired or unrepaired, they may ultimately result in mutations or wider-scale genome aberrations that threaten cell homeostasis. Consequently, the cells elicit an elaborate signalling network, known as DNA damage response (DDR), to detect and repair these cytotoxic lesions. This Research Topic was aimed at comprehensive investigations of basic and novel mechanisms that underlie the DNA damage response in eukaryotes.

DNA Replication Stress

Author:
ISBN: 9783039213894 9783039213900 Year: Pages: 368 DOI: 10.3390/books978-3-03921-390-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of International Journal of Molecular Sciences (IJMS) is dedicated to the mechanisms mediated at the molecular and cellular levels in response to adverse genomic perturbations and DNA replication stress. The relevant proteins and processes play paramount roles in nucleic acid transactions to maintain genomic stability and cellular homeostasis. A total of 18 articles are presented which encompass a broad range of highly relevant topics in genome biology. These include replication fork dynamics, DNA repair processes, DNA damage signaling and cell cycle control, cancer biology, epigenetics, cellular senescence, neurodegeneration, and aging. As Guest Editor for this IJMS Special Issue, I am very pleased to offer this collection of riveting articles centered on the theme of DNA replication stress. The blend of articles builds upon a theme that DNA damage has profound consequences for genomic stability and cellular homeostasis that affect tissue function, disease, cancer, and aging at multiple levels and through unique mechanisms. I thank the authors for their excellent contributions, which provide new insight into this fascinating and highly relevant area of genome biology.

Keywords

barley --- chromosome --- DNA replication pattern --- EdU --- mutagens --- DNA replication --- DNA damage --- DNA repair --- genome integrity --- A549 cells --- H1299 cells --- heterogeneity --- DNA damage response --- 8-chloro-adenosine --- DNA replication --- S phase --- origin firing --- TopBP1 --- ATR --- DNA fiber assay --- APE2 --- ATR-Chk1 DDR pathway --- Genome integrity --- SSB end resection --- SSB repair --- SSB signaling --- DNA replication stress --- genome stability --- ubiquitin --- replication fork restart --- translesion synthesis --- template-switching --- homologous recombination --- Fanconi Anemia --- G protein-coupled receptor (GPCR) --- aging --- DNA damage --- ?-arrestin --- G protein-coupled receptor kinase (GRK) --- interactome --- G protein-coupled receptor kinase interacting protein 2 (GIT2) --- ataxia telangiectasia mutated (ATM) --- clock proteins --- energy metabolism --- neurodegeneration --- cellular senescence --- ageing --- Alzheimer’s disease --- multiple sclerosis --- Parkinson’s disease --- lipofuscin --- SenTraGorTM (GL13) --- senolytics --- DNA replication --- DNA repair --- DNA damage response --- DNA translocation --- DNA helicase --- superfamily 2 ATPase --- replication restart --- fork reversal --- fork regression --- chromatin remodeler --- C9orf72 --- ALS --- motor neuron disease --- R loops, nucleolar stress --- neurodegeneration --- Difficult-to-Replicate Sequences --- replication stress --- non-B DNA --- Polymerase eta --- Polymerase kappa --- genome instability --- common fragile sites --- Microsatellites --- cancer --- DNA double-strand repair --- premature aging --- post-translational modification --- protein stability --- replication stress --- Werner Syndrome --- Werner Syndrome Protein --- dormant origins --- replicative stress --- replication timing --- DNA damage --- genome instability --- cancer --- Thermococcus eurythermalis --- endonuclease IV --- AP site analogue --- spacer --- DNA repair --- DNA repair --- double strand break repair --- exonuclease 1 --- EXO1 --- mismatch repair --- MMR --- NER --- nucleotide excision repair --- strand displacements --- TLS --- translesion DNA synthesis --- POL? --- mutation frequency --- mutations spectra --- SupF --- mutagenicity --- oxidative stress --- DNA damage --- DNA repair --- replication --- 8-oxoG --- epigenetic --- gene expression --- helicase --- cell cycle checkpoints --- genomic instability --- G2-arrest --- cell death --- repair of DNA damage --- adaptation --- n/a

Evolution, Composition and Regulation of Supernumerary B Chromosomes

Authors: --- --- ---
ISBN: 9783038977865 9783038977872 Year: Pages: 254 DOI: 10.3390/books978-3-03897-787-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:28
License:

Loading...
Export citation

Choose an application

Abstract

Supernumerary B chromosomes (Bs) are dispensable genetic elements found in thousands of species of plants and animals, and some fungi. Since their discovery more than a century ago, they have been a source of puzzlement, as they only occur in some members of a population and are absent from others. When they do occur, they are often harmful, and in the absence of “selfishness”, based on mechanisms of mitotic and meiotic drive, there appears to be no obvious reason for their existence. Cytogeneticists have long wrestled with questions about the biological existence of these enigmatic elements, including their lack of any adaptive properties, apparent absence of functional genes, their origin, sequence organization, and co-evolution as nuclear parasites. Emerging new technologies are now enabling researchers to step up a gear, to look enthusiastically beyond the previous limits of the horizon, and to uncover the secrets of these “silent” chromosomes. This book provides a comprehensive guide to theoretical advancements in the field of B chromosome research in both animal and plant systems.

Keywords

repetitive elements --- RNA-Seq --- genomics --- evolution --- cytogenetics --- supernumerary elements --- extra chromosomes --- B chromosomes --- transmission --- drive --- host/parasite interaction --- supernumerary chromosomes --- karyotype evolution --- genome instability --- supernumerary chromosomes --- heterochromatin --- parent-of-origin effects --- paternal X chromosome --- maternal X chromosome --- controlling element --- teleost --- population analysis --- whole genome resequencing --- DNA copy number variation --- ribosomal DNA --- B chromosomes --- FISH (fluorescence in situ hybridisation) --- GISH (genomic in situ hybridisation) --- Prospero autumnale complex --- supernumerary chromosomal segments (SCS) evolution --- tandem repeats --- Drosophila --- supernumerary --- satellite DNA --- sSMC --- B chromosomes --- dot-like (micro) Bs --- karyotypic characteristics --- ?s --- B morphotypes --- Apodemus peninsulae --- maize B chromosome --- centromere --- inactivation --- reactivation --- de novo centromere formation --- epigenetics --- supernumerary chromosomes --- additional chromosomes --- chromosome polymorphism --- evolution --- B chromosomes --- karyotypes --- genome evolution --- interphase nucleus --- mammals --- genes --- repetitive DNA --- transcription of heterochromatin --- B chromosomes --- grasshoppers --- DNA composition --- repeat clusters --- euchromatin degradation --- microdissected DNA probes --- B chromosome --- satellite DNA --- mobile element --- organelle DNA --- chromosome evolution --- fluorescent in situ hybridization --- Orthoptera --- satellite DNA --- supernumerary chromosome --- RepeatExplorer --- supernumerary chromosomes --- B chromosomes --- next-generation sequencing --- coverage ratio analysis --- n/a --- B chromosome --- transmission --- origin --- drive --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search