Search results: Found 3

Listing 1 - 3 of 3
Sort by
Molecular Basis of Cardiovascular Diseases: Implications of Natriuretic Peptides

Authors: ---
ISBN: 9783039215829 9783039215836 Year: Pages: 212 DOI: 10.3390/books978-3-03921-583-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Cardiovascular
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The natriuretic peptides (NPs) family includes a class of hormones and their receptors needed for the physiological control of cardiovascular functions. The discovery of NPs provided a fundamental contribution into our understanding of the physiological regulation of blood pressure, and of heart and kidney functions. NPs have also been implicated in the pathogenesis of several cardiovascular diseases (CVDs), including hypertension, atherosclerosis, heart failure, and stroke. A fine comprehension of the molecular mechanisms dependent from NPs and underlying the promotion of cardiovascular damage has contributed to improve our understanding of the molecular basis of all major CVDs. Finally, the opportunity to target NPs in order to develop new therapeutic tools for a better treatment of CVDs has been developed over the years. The current Special Issue of the Journal covers all major aspects of the molecular implications of NPs in physiology and pathology of the cardiovascular system, including NP-based therapeutic approaches.

Keywords

PCSK9 --- natriuretic peptides --- adipose tissue --- lipid metabolism --- LDL receptor --- insulin --- natriuretic peptides --- hypertension --- stroke --- cardiac hypertrophy --- linkage analysis --- genetic variants --- animal models --- BNP --- NT-proBNP --- heart failure --- cardiac dysfunction --- forensic medicine --- postmortem biochemistry --- angiotensin receptor–neprilysin inhibitor --- natriuretic peptides --- renin–angiotensin system --- heart failure --- arterial hypertension --- natriuretic peptide --- vascular --- endothelial cell --- cardiomyocyte --- fibroblast --- inflammation --- heart failure --- hypertension --- angiogenesis --- heart failure --- natriuretic peptides --- preserved ejection fraction --- natriuretic peptides --- heart failure --- atrial fibrillation --- remodeling --- Idiopathic Pulmonary Arterial Hypertension (IPAH) --- Natriuretic Peptide Clearance Receptor (NPR-C) signaling --- atrial natriuretic peptide --- hypertension --- heart failure --- cardiometabolic disease --- obesity --- metabolic syndrome --- cGMP --- guanylyl cyclase receptor A --- natriuretic peptides --- natriuretic peptide --- cardiorenal syndrome --- vasopressor --- vasodilator --- kidney --- medulla --- renin-angiotensin-aldosterone system --- Atrial Natriuretic peptide --- natriuretic peptides --- cardiac remodelling --- cardiac hypertrophy --- vascular homeostasis --- atrial natriuretic peptide --- guanylyl cyclase/natriuretic peptide receptor-A --- gene-knockout --- gene-duplication --- hypertension --- congestive heart failure --- natriuretic peptides --- arterial hypertension --- pulmonary arterial hypertension --- heart failure --- stroke --- atrial fibrillation --- ARNi --- MANP

Repetitive DNA Sequences

Authors: --- --- ---
ISBN: 9783039283668 9783039283675 Year: Pages: 206 DOI: 10.3390/books978-3-03928-367-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Genetics
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Repetitive DNA is ubiquitous in eukaryotic genomes, and, in many species, comprises the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome, and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and unequal crossing over. Despite their abundance, repetitive DNA is often ignored in genomic studies due to technical challenges in their identification, assembly, and quantification. New technologies and methods are now providing the unprecedented power to analyze repetitive DNAs across diverse taxa. Repetitive DNA is of particular interest because it can represent distinct modes of genome evolution. Some repetitive DNA forms essential genome structures, such as telomeres and centromeres, which are required for proper chromosome maintenance and segregation, whereas others form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve under purifying selection. In contrast, other repeats evolve selfishly and produce genetic conflicts with their host species that drive adaptive evolution of host defense systems. However, the majority of repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition and unequal crossing over. Even these neutral repeats may indirectly influence genome evolution as they reach high abundance. In this Special Issue, the contributing authors explore these questions from a range of perspectives.

Major Histocompatibility Complex (MHC) in Health and Disease

Authors: --- ---
ISBN: 9783039280728 9783039280735 Year: Pages: 375 DOI: 10.3390/books978-3-03928-073-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

The major histocompatibility complex (MHC) is a highly polymorphic and diverse multigene locus in all jawed vertebrate species that has an integral role in adaptive/innate immune systems, transplantation, and infectious and autoimmune diseases. The MHC supra-locus in mammalian vertebrates is usually partitioned into three distinct regions, known as classes I, II, and III, which, to varying extents, can be found conserved in nonmammalian jawed vertebrates, such as bony fish, amphibians, and bird lineages. The MHC gene region is characterized particularly by the expression of class I and class II glycoproteins that bind peptides derived from intracellular or extracellular antigens to circulating T-cells. While this expressed antigenic specificity remains the predominant interest with respect to MHC function and polymorphism in a population, a broader concept has emerged that examines the MHC as a multifunctional polymorphic controller that facilitates and regulates genome diversity with a much greater array of functions and effects than just MHC-restricted antigen recognition. This volume of 19 reprints presented by various experts and collected from the Special Issue of Cells on “MHC in Health and Disease” covers a broad range of topics on the genomic diversity of the MHC regulatory system in various vertebrate species, including MHC class I, II, and III genes; innate and adaptive immunity; neurology; transplantation; haplotypes; infectious and autoimmune diseases; fecundity; conservation; allelic lineages; and evolution. Taken together, these articles demonstrate the immense complexity and diversity of the MHC structure and function within and between different vertebrate species.

Keywords

MHC-I- and MHC-II-dependent inter-individual recognition --- MHC-II-associated sperm-egg recognition --- MHC-I-based mother-fetus recognition --- giant panda --- long-fragment super haplotype --- MHC --- genetic drift --- haplotype --- crested ibis --- founder effect --- bottleneck --- conservation genetics --- selection --- fish --- MHC --- polymorphism --- disease resistance --- quantitative trait loci (QTL) studies --- evolution --- HCP5 --- lncRNA --- MHC --- HLA --- human endogenous retrovirus (HERV) --- cancer --- autoimmune diseases --- competing endogenous RNA (ceRNA) --- human immunodeficiency virus (HIV) --- human papillomavirus (HPV) --- astrogliosis --- PNS/CNS interface --- microglial reaction --- synaptic covering --- ?2m knockout mice --- HLA-B27 --- viral peptides --- computational analysis --- ankylosing spondylitis --- KIR --- KIR–HLA pairs --- ethnic populations in China --- molecular dynamics simulation --- major histocompatibility complex --- antigen --- T-cell receptor --- domain movements --- autoimmunity --- risk genes --- expression --- regulation --- swine leukocyte antigen --- reproductive performance --- production trait --- haplotype --- micro-mini-pigs --- disease association --- haplotype --- HLA polymorphism --- major histocompatibility complex (MHC) --- pedigree --- phase --- protocol --- single nucleotide polymorphism (SNP) --- T1DGC --- type 1 diabetes (T1D) --- BK virus --- polyomavirus --- nephropathy --- human leukocyte antigen-E --- kidney transplantation --- MHC --- ancestral haplotype --- autoimmune disease --- cynomolgus macaque --- Macaca fascicularis --- MHC polymorphism --- experimental medicine --- nonhuman primate models --- DXO --- DOM3Z --- NELF-E --- RD --- SKIV2L --- SKI2W --- STK19 --- RP1 --- NSDK --- RLR --- miR1236 --- SVA --- RNA quality control --- 5??3? RNA decay --- 3??5? mRNA turnover --- antiviral immunity --- interferon ? --- promoter-proximal transcriptional pause --- exosomes --- nuclear kinase --- hepatocellular carcinoma --- Ski complex --- trichohepatoenteric syndrome --- melanoma --- major histocompatibility complex --- MHC --- evolution --- nonclassical --- fish --- MHC genes --- birds --- disease resistance --- orthology --- life history --- gene duplication --- long-read sequencing --- high-throughput sequencing --- concerted evolution --- ecology --- MHC --- major histocompatibility complex --- Old World camels --- camels --- dromedary --- Bactrian camel --- SNP --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

english (3)


Year
From To Submit

2020 (2)

2019 (1)