Search results:
Found 3
Listing 1  3 of 3 
Sort by

Choose an application
The many technical and computational problems that appear to be constantly emerging in various branches of physics and engineering beg for a more detailed understanding of the fundamental mathematics that serves as the cornerstone of our way of understanding natural phenomena. The purpose of this Special Issue was to establish a brief collection of carefully selected articles authored by promising young scientists and the world's leading experts in pure and applied mathematics, highlighting the stateoftheart of the various research lines focusing on the study of analytical and numerical mathematical methods for pure and applied sciences.
ultraparabolic equation  ultradiffusion process  probabilistic representation  mathematical finance  linear elastostatics  layer potentials  fredholmian operators  fractional differential equations  fractional derivative  Abeltype integral  time delay  distributed lag  gamma distribution  macroeconomics  Keynesian model  integral transforms  Laplace integral transform  transmutation operator  generating operator  integral equations  differential equations  operational calculus of Mikusinski type  Mellin integral transform  fractional derivative  fractional integral  Mittag–Leffler function  Riemann–Liouville derivative  Caputo derivative  Grünwald–Letnikov derivative  spacetime fractional diffusion equation  fractional Laplacian  subordination principle  MittagLeffler function  Bessel function  exterior calculus  exterior algebra  electromagnetism  Maxwell equations  differential forms  tensor calculus  Fourier Theory  DFT in polar coordinates  polar coordinates  multidimensional DFT  discrete Hankel Transform  discrete Fourier Transform  Orthogonality  multispecies biofilm  biosorption  free boundary value problem  heavy metals toxicity  method of characteristics  relativistic diffusion equation  Caputo fractional derivatives of a function with respect to another function  BesselRiesz motion  Mittag–Leffler function  matrix function  Schur decomposition  Laplace transform  fractional calculus  central limit theorem  anomalous diffusion  stable distribution  fractional calculus  power law  n/a
Choose an application
Developing techniques for assessing various risks and calculating probabilities of ruin and survival are exciting topics for mathematicallyinclined academics. For practicing actuaries and financial engineers, the resulting insights have provided enormous opportunities but also created serious challenges to overcome, thus facilitating closer cooperation between industries and academic institutions. In this book, several renown researchers with extensive interdisciplinary research experiences share their thoughts that, in one way or another, contribute to the betterment of practice and theory of decision making under uncertainty. Behavioral, cultural, mathematical, and statistical aspects of risk assessment and modelling have been explored, and have been often illustrated using real and simulated data. Topics range from financial and insurance risks to securitytype risks, from onedimensional to multi and even infinitedimensional risks.
aggregate discounted claims  Markovian arrival process  partial integrodifferential equation  covariance  multivariate gamma distribution  multiplicative background risk model  aggregate risk  individual risk model  collective risk model  risk measure  cumulative Parisian ruin  stochastic orders  surplus process  renewal process  discounted aggregate claims  copulas  archimedean copulas  background risk  systematic risk  transfer function  information processing  order statistic  concomitant  ruin probability  dual risk model  constant interest rate  integral equation  Laplace transform  numerical approximation  maximal tail dependence  clustering  financial time series  weighted cuts  copula  national culture  survival analysis  hazard model  rating migrations  advanced measurement approach  confidence interval  Monte Carlo  operational risk  valueatrisk  central limit theorem  insurance  maxstable random fields  rate of spatial diversification  reinsurance  risk management  risk theory  spatial dependence  spatial risk measures and corresponding axiomatic approach  n/a
Choose an application
Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropybased concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.
complexity  streamflow  water level  composite multiscale sample entropy  trend  Poyang Lake basin  fourparameter exponential gamma distribution  principle of maximum entropy  precipitation frequency analysis  methods of moments  maximum likelihood estimation  flood frequency analysis  generalized gamma (GG) distribution  principle of maximum entropy (POME)  entropy theory  principle of maximum entropy (POME)  GB2 distribution  flood frequency analysis  nonpoint source pollution  ANN  entropy weighting method  datascarce  multievents  spatiotemporal variability  soil water content  entropy  arid region  joint entropy  NDVI  temperature  precipitation  groundwater depth  Hei River basin  turbulent flow  canopy flow  randomness  coherent structures  Shannon entropy  Kolmogorov complexity  entropy  information transfer  optimization  radar  rainfall network  water resource carrying capacity  forewarning model  entropy of information  fuzzy analytic hierarchy process  projection pursuit  accelerating genetic algorithm  entropy production  conditional entropy production  stochastic processes  scaling  climacogram  turbulence  water resources vulnerability  connection entropy  changing environment  set pair analysis  Anhui Province  crossentropy minimization  land suitability evaluation  spatial optimization  monthly streamflow forecasting  Burg entropy  configurational entropy  entropy spectral analysis time series analysis  entropy  water monitoring  network design  hydrometric network  information theory  entropy applications  hydrological risk analysis  maximum entropycopula method  uncertainty  Loess Plateau  entropy  water engineering  Tsallis entropy  principle of maximum entropy  Lagrangian function  probability distribution function  flux concentration relation  uncertainty  information  informational entropy  variation of information  continuous probability distribution functions  confidence intervals  precipitation  variability  marginal entropy  crop yield  Hexi corridor  flow duration curve  Shannon entropy  entropy parameter  modeling  spatial and dynamics characteristic  hydrology  tropical rainfall  statistical scaling  Tsallis entropy  multiplicative cascades  BetaLognormal model  rainfall forecast  cross entropy  ant colony fuzzy clustering  combined forecast  information entropy  mutual information  kernel density estimation  ENSO  nonlinear relation  scaling laws  power laws  water distribution networks  robustness  flow entropy  entropy theory  frequency analysis  hydrometeorological extremes  Bayesian technique  rainfall  entropy ensemble filter  ensemble model simulation criterion  EEF method  bootstrap aggregating  bagging  bootstrap neural networks  El Niño  ENSO  neural network forecast  sea surface temperature  tropical Pacific  entropy  cross elasticity  mean annual runoff  water resources  resilience  quaternary catchment  complement  substitute  entropy theory  complex systems  hydraulics  hydrology  water engineering  environmental engineering
Listing 1  3 of 3 
Sort by
