Search results: Found 13

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Fatigue in Multiple Sclerosis

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197637 Year: Pages: 87 DOI: 10.3389/978-2-88919-763-7 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Medicine (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Dear Readers,If you are engaged in the treatment of patients with MS (pwMS), this e-book’s aim is to offer novel insights to improve on an understanding of one of the major problems of pwMS: fatigue. Although there is increasing research into fatigue and its impact on MS, this collection of ten articles supports a better understanding of fatigue in MS patients. It explores pathophysiological concepts, provoking mechanisms, objective measurements, personality interactions, pharmacological and non-pharmacological interventions and summarizes clinical management. It is written by neurologists, psychologists, scientists and therapists and addresses this group of people, who deal with pwMS in private, clinical, rehabilitation or scientific settings. Its aim is to communicate high-quality information, knowledge and experience on MS to healthcare professionals, while providing global support for the international MS community.

Neuro-motor control and feed-forward models of locomotion in humans

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196142 Year: Pages: 190 DOI: 10.3389/978-2-88919-614-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Locomotion involves many different muscles and the need of controlling several degrees of freedom. Despite the Central Nervous System can finely control the contraction of individual muscles, emerging evidences indicate that strategies for the reduction of the complexity of movement and for compensating the sensorimotor delays may be adopted. Experimental evidences in animal and lately human model led to the concept of a central pattern generator (CPG) which suggests that circuitry within the distal part of CNS, i.e. spinal cord, can generate the basic locomotor patterns, even in the absence of sensory information. Different studies pointed out the role of CPG in the control of locomotion as well as others investigated the neuroplasticity of CPG allowing for gait recovery after spinal cord lesion. Literature was also focused on muscle synergies, i.e. the combination of (locomotor) functional modules, implemented in neuronal networks of the spinal cord, generating specific motor output by imposing a specific timing structure and appropriate weightings to muscle activations. Despite the great interest that this approach generated in the last years in the Scientific Community, large areas of investigations remain available for further improvement (e.g. the influence of afferent feedback and environmental constrains) for both experimental and simulated models. However, also supraspinal structures are involved during locomotion, and it has been shown that they are responsible for initiating and modifying the features of this basic rhythm, for stabilising the upright walking, and for coordinating movements in a dynamic changing environment. Furthermore, specific damages into spinal and supraspinal structures result in specific alterations of human locomotion, as evident in subjects with brain injuries such as stroke, brain trauma, or people with cerebral palsy, in people with death of dopaminergic neurons in the substantia nigra due to Parkinson’s disease, or in subjects with cerebellar dysfunctions, such as patients with ataxia. The role of cerebellum during locomotion has been shown to be related to coordination and adaptation of movements. Cerebellum is the structure of CNS where are conceivably located the internal models, that are neural representations miming meaningful aspects of our body, such as input/output characteristics of sensorimotor system. Internal model control has been shown to be at the basis of motor strategies for compensating delays or lacks in sensorimotor feedbacks, and some aspects of locomotion need predictive internal control, especially for improving gait dynamic stability, for avoiding obstacles or when sensory feedback is altered or lacking. Furthermore, despite internal model concepts are widespread in neuroscience and neurocognitive science, neurorehabilitation paid far too little attention to the potential role of internal model control on gait recovery. Many important scientists have contributed to this Research Topic with original studies, computational studies, and review articles focused on neural circuits and internal models involved in the control of human locomotion, aiming at understanding the role played in control of locomotion of different neural circuits located at brain, cerebellum, and spinal cord levels.

Bilateral Vestibulopathy - Current Knowledge and Future Directions to Improve its Diagnosis and Treatment

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456284 Year: Pages: 170 DOI: 10.3389/978-2-88945-628-4 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Neurology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Many patients with bilateral vestibulopathy experience chronic oscillopsia due to failure of the vestibulo-ocular reflex and gait instability due to failure of vestibulo-spinal reflexes. There are numerous potential contributing factors, however, many cases remain idiopathic. The diagnosis of bilateral vestibulopathy is often delayed, placing patients at risk for unnecessary diagnostic tests and late initiation of treatment. Novel diagnostic tests offer new opportunities to characterize patterns of vestibular impairment. With the advent of new therapies, there is urgency to define and better understand patients with bilateral vestibulopathy. This collection includes topics such as an exploration of the large class of patients with bilateral vestibulopathy currently considered idiopathic, by identifying novel pathophysiologic mechanisms. Other topics include a historical perspective on early recognition, the impact of bilateral vestibular impairment on quality of life, and how advances in diagnostics are refining our understanding of what it means to have bilateral vestibulopathy. New developments in treatment strategies for patients with bilateral vestibulopathy are also featured.

New Advanced Wireless Technologies for Objective Monitoring of Motor Symptoms in Parkinson's Disease

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454860 Year: Pages: 122 DOI: 10.3389/978-2-88945-486-0 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Neurology
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

Over the last decade, a growing number of researchers have used advanced wireless technologies including wearable sensors for objective evaluation of specific motor symptoms in patients with Parkinson's disease (PD). In the near future, sensing technologies will likely provide relevant advances in the clinical management of patients with PD, contributing to early diagnosis, disease progression monitoring and therapeutic approach. In this regard, this eBook hosts new original studies focused on the objective monitoring of motor symptoms and therapeutic perspectives of wireless technologies in patients with PD.

Towards a New Cognitive Neuroscience: Modeling Natural Brain Dynamics

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192717 Year: Pages: 166 DOI: 10.3389/978-2-88919-271-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Decades of brain imaging experiments have revealed important insights into the architecture of the human brain and the detailed anatomic basis for the neural dynamics supporting human cognition. However, technical restrictions of traditional brain imaging approaches including functional magnetic resonance tomography (fMRI), positron emission tomography (PET), and magnetoencephalography (MEG) severely limit participants' movements during experiments. As a consequence, our knowledge of the neural basis of human cognition is rooted in a dissociation of human cognition from what is arguably its foremost, and certainly its evolutionarily most determinant function, organizing our behavior so as to optimize its consequences in our complex, multi-scale, and ever-changing environment. The concept of natural cognition, therefore, should not be separated from our fundamental experience and role as embodied agents acting in a complex, partly unpredictable world. To gain new insights into the brain dynamics supporting natural cognition, we must overcome restrictions of traditional brain imaging technology. First, the sensors used must be lightweight and mobile to allow monitoring of brain activity during free participant movements. New hardware technology for electroencephalography (EEG) and near infrared spectroscopy (NIRS) allows recording electrical and hemodynamic brain activity while participants are freely moving. New data-driven analysis approaches must allow separation of signals arriving at the sensors from the brain and from non-brain sources (neck muscles, eyes, heart, the electrical environment, etc.). Independent component analysis (ICA) and related blind source separation methods allow separation of brain activity from non-brain activity from data recorded during experimental paradigms that stimulate natural cognition. Imaging the precisely timed, distributed brain dynamics that support all forms of our motivated actions and interactions in both laboratory and real-world settings requires new modes of data capture and of data processing. Synchronously recording participants’ motor behavior, brain activity, and other physiology, as well as their physical environment and external events may be termed mobile brain/body imaging ('MoBI'). Joint multi-stream analysis of recorded MoBI data is a major conceptual, mathematical, and data processing challenge. This Research Topic is one result of the first international MoBI meeting in Delmenhorst Germany in September 2013. During an intense workshop researchers from all over the world presented their projects and discussed new technological developments and challenges of this new imaging approach. Several of the presentations are compiled in this Research Topic that we hope may inspire new research using the MoBI paradigm to investigate natural cognition by recording and analyzing the brain dynamics and behavior of participants performing a wide range of naturally motivated actions and interactions.

Mechanism Design for Robotics

Authors: ---
ISBN: 9783039210589 9783039210596 Year: Pages: 212 DOI: 10.3390/books978-3-03921-059-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

MEDER 2018, the IFToMM International Symposium on Mechanism Design for Robotics, was the fourth event in a series that was started in 2010 as a specific conference activity on mechanisms for robots. The aim of the MEDER Symposium is to bring researchers, industry professionals, and students together from a broad range of disciplines dealing with mechanisms for robots, in an intimate, collegial, and stimulating environment. In the 2018 MEDER event, we received significant attention regarding this initiative, as can be seen by the fact that the Proceedings contain contributions by authors from all around the world.The Proceedings of the MEDER 2018 Symposium have been published within the Springer book series on MMS, and the book contains 52 papers that have been selected after review for oral presentation. These papers cover several aspects of the wide field of robotics dealing with mechanism aspects in theory, design, numerical evaluations, and applications.This Special Issue of Robotics (https://www.mdpi.com/journal/robotics/special_issues/MDR) has been obtained as a result of a second review process and selection, but all the papers that have been accepted for MEDER 2018 are of very good quality with interesting contents that are suitable for journal publication, and the selection process has been difficult.

Keywords

hexapod walking robot --- 3-UPU parallel mechanism --- kinematics --- stability --- gait planning --- shape changing --- rolling --- robot --- cylindrical --- elliptical --- velocity control --- economic locomotion --- actuation burden --- inadvertent braking --- humanoid robots --- parallel mechanisms --- cable-driven robots --- robotic legs --- painting robot --- collaborative robot --- image processing --- non-photorealistic rendering --- artistic rendering --- robot wrists --- spherical parallel mechanism --- orientational mechanisms --- computer-aided design --- workspace analysis --- iCub --- shape memory alloy --- compliant mechanism --- SMA actuator --- pneumatic artificial muscle --- McKibben muscle --- haptic glove --- hand exoskeleton --- teleoperation --- force reflection --- human-machine interaction --- robot kinematics --- robot singularity --- singularity analysis --- robot control --- mobile manipulation --- human-robot-interaction --- learning by demonstration --- compliance control --- trajectory planning --- energy efficiency --- redundancy --- robotic cell --- kinematic redundancy --- cable-driven parallel robots --- fail-safe operation --- exercising device --- cobot --- V2SOM --- safety mechanism --- safe physical human–robot interaction --- pHRI --- variable stiffness actuator --- VSA --- collaborative robots --- humanoid robotic hands --- underactuated fingers --- graphical user interface --- grasp stability --- safe physical human–robot interaction (pHRI) --- variable stiffness actuator (VSA) --- collaborative robots --- robot-assisted Doppler sonography --- n/a

Advances in Mechanical Systems Dynamics

Authors: --- ---
ISBN: 9783039281886 9783039281893 Year: Pages: 236 DOI: 10.3390/books978-3-03928-189-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mechanical Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Modern dynamics was established many centuries ago by Galileo and Newton before the beginning of the industrial era. Presently, we are in the presence of the fourth industrial revolution, and mechanical systems are increasingly being integrated with electronic, electrical, and fluidic systems. This trend is present not only in the industrial environment, which will soon be characterized by the cyber-physical systems of industry 4.0, but also in other environments like mobility, health and bio-engineering, food and natural resources, safety, and sustainable living. In this context, purely mechanical systems with quasi-static behavior will become less common and the state-of-the-art will soon be represented by integrated mechanical systems, which need accurate dynamic models to predict their behavior. Therefore, mechanical system dynamics are going to play an increasingly central role. Significant research efforts are needed to improve the identification of the mechanical properties of systems in order to develop models that take non-linearity into account, and to develop efficient simulation tools. This Special Issue aims at disseminating the latest research achievements, findings, and ideas in mechanical systems dynamics, with particular emphasis on applications that are strongly integrated with other systems and require a multi-physical approach.

Soft Material-Enabled Electronics for Medicine, Healthcare, and Human-Machine Interfaces

Authors: ---
ISBN: 9783039282821 9783039282838 Year: Pages: 244 DOI: 10.3390/books978-3-03928-283-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Soft material-enabled electronics offer distinct advantage, over conventional rigid and bulky devices, for numerous wearable and implantable applications. Soft materials allow for seamless integration with skin and tissues due to enhanced mechanical flexibility and stretchability. Wearable devices, such as sensors, offer continuous, real-time monitoring of biosignals and movements, which can be applied in rehabilitation and diagnostics, among other applications. Soft implantable electronics offer similar functionalities, but with improved compatibility with human tissues. Biodegradable soft implantable electronics are also being developed for transient monitoring, such as in the weeks following surgery. To further advance soft electronics, materials, integration strategies, and fabrication techniques are being developed. This paper reviews recent progress in these areas, toward the development of soft material-enabled electronics for medicine, healthcare, and human-machine interfaces.

Keywords

soft materials --- flexible hybrid electronics --- wearable electronics --- stretchable electronics --- medicine --- healthcare --- human-machine interfaces --- point-of-care testing --- soft material-based channel --- PDMS optical filter --- smartphone-based biosensor --- chromogenic biochemical assay --- naked-eye detection --- implantable materials --- low-profile bioelectronics --- micro/nanofabrication --- medical devices --- biodegradable materials --- miniaturization --- bioresorbable electronics --- printing electronics techniques --- conductive inks --- flexible electronics --- carbon-based nano-materials --- bio-integrated electronics --- hardening sponge --- MR sponge --- 6 degrees-of-freedom (6-DOF) MR haptic master --- RMIS (robot-assisted minimally invasive surgery) --- implantable devices --- optical waveguides --- optical fibers --- biocompatible --- biodegradable --- electroactive hydrogel --- polyvinyl alcohol --- cellulose nanocrystals --- freeze–thaw method --- actuation --- biodegradable electronics --- transient electronics --- soft biomedical electronics --- biodegradable materials --- silver nanowire --- graphene oxide --- polymer-dispersed liquid crystal --- smart window --- hybrid transparent conductive electrode --- conductive textile --- capacitive pressure sensor --- gait --- monitoring --- phase coordination index --- stretchable --- polydimethylsiloxane --- liquid-metal --- capacitor --- dysphagia --- swallowing --- tongue --- nitinol --- superelastic --- prosthesis --- soft materials --- wearable electronics --- implantable electronics --- biodegradable --- medical devices --- diagnostics --- health monitoring --- human-machine interfaces

MEMS Accelerometers

Authors: --- ---
ISBN: 9783038974147 9783038974154 Year: Pages: 252 DOI: 10.3390/books978-3-03897-415-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc.

Keywords

low-temperature co-fired ceramic (LTCC) --- capacitive accelerometer --- wireless --- process optimization --- performance characterization --- MEMS accelerometer --- mismatch of parasitic capacitance --- electrostatic stiffness --- high acceleration sensor --- piezoresistive effect --- MEMS --- micro machining --- turbulent kinetic energy dissipation rate --- probe --- microelectromechanical systems (MEMS) piezoresistive sensor chip --- Taguchi method --- marine environmental monitoring --- accelerometer --- frequency --- acceleration --- heat convection --- motion analysis --- auto-encoder --- dance classification --- deep learning --- self-coaching --- wavelet packet --- classification of horse gaits --- MEMS sensors --- gait analysis --- rehabilitation assessment --- body sensor network --- MEMS accelerometer --- electromechanical delta-sigma --- built-in self-test --- in situ self-testing --- digital resonator --- accelerometer --- activity monitoring --- regularity of activity --- sleep time duration detection --- indoor positioning --- WiFi-RSSI radio map --- MEMS-IMU accelerometer --- zero-velocity update --- step detection --- stride length estimation --- field emission --- hybrid integrated --- vacuum microelectronic --- cathode tips array --- interface ASIC --- micro-electro-mechanical systems (MEMS) --- delaying mechanism --- safety and arming system --- accelerometer --- multi-axis sensing --- capacitive transduction --- inertial sensors --- three-axis accelerometer --- micromachining --- miniaturization --- stereo visual-inertial odometry --- fault tolerant --- hostile environment --- MEMS-IMU --- mode splitting --- Kerr noise --- angular-rate sensing --- whispering-gallery-mode --- optical microresonator --- three-axis acceleration sensor --- MEMS technology --- sensitivity --- L-shaped beam --- n/a

Human Health Engineering

Author:
ISBN: 9783039284085 9783039284092 Year: Pages: 428 DOI: 10.3390/books978-3-03928-409-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

In this Special Issue on human health engineering, we invited submissions exploring recent contributions to the field of human health engineering, which is the technology used for monitoring the physical or mental health status of individuals in a variety of applications. Contributions focused on sensors, wearable hardware, algorithms, or integrated monitoring systems. We organized the different papers according to their contributions to the main aspects of the monitoring and control engineering scheme applied to human health applications, including papers focusing on measuring/sensing physiological variables, contributions describing research on the modelling of biological signals, papers highlighting health monitoring applications, and finally examples of control applications for human health. In comparison to biomedical engineering, the field of human health engineering also covers applications on healthy humans (e.g., sports, sleep, and stress) and thus not only contributes to develop technology for curing patients or supporting chronically ill people, but also more generally for disease prevention and optimizing human well-being.

Keywords

artefact correction --- head-shaped phantom --- spherical phantom --- gradient artefact --- simultaneous EEG–fMRI --- calcaneal spur --- pain minimum compressive pressure --- contour of shoe insole --- insole foot area --- health information --- interface formats --- older adults --- wearable devices --- usability --- emotional reaction --- ADHD --- screening --- machine learning --- SVM --- children --- novel --- nomophobia --- anxiety --- smartphone --- internet --- cyberaddiction --- new technologies --- chronic obstructive pulmonary disease --- COPD --- oxygen uptake --- VO2 --- kinetics --- exercise testing --- rehabilitation robotics --- soft walking assistive robot --- long-term effect --- gait characteristics --- elderly person --- blood pressure estimation --- photoplethysmogram --- pulse wave --- pulse oximeter --- wearable device --- Kano-TRIZ design theory --- quality function deployment --- four-wheeled rollator --- model predictive control --- orthosis control --- muscle modeling --- arm --- Hill muscle --- swarm optimization --- pneumatic artificial muscle --- sliding mode control --- fractional calculus --- antagonistic actuator --- weight loss --- mHealth --- dynamic model --- adaptive control --- spirometry --- airflow limitation --- airway resistance --- specific airway conductance --- COPD --- body-plethysmography --- forced expiration --- alveolar pressure --- emphysema --- computed tomography --- air-trapping --- thermal comfort --- bicycle helmet --- smart wearables --- adaptive model --- streaming data --- thermal sensation --- adaptive model --- personalized model --- machine leaning --- support-vector-machine --- adaptive control --- streaming algorithm --- thermoregulation --- homeostasis --- cold-induced-vasodilation --- cold-induced-vasoconstriction --- control system --- dynamic modelling --- powered mobility --- dyskinetic cerebral palsy --- dystonia --- choreoathetosis --- mobility scale --- movement disorder --- children --- youth --- reliability --- validity --- feature engineering --- intensive care unit --- mortality prediction --- hard-margin support vector machines --- driver drowsiness --- thermoregulation --- distal skin temperature --- decision tree --- heart model --- Van der Pol --- FitzHugh–Nagumo --- relaxation oscillator --- electrocardiographic signal --- bicycle helmets --- thermal manikin --- convective and evaporative heat loss --- zonal performance characteristics --- freestyle skiing aerials --- knee joint --- ligament --- finite element simulation --- lifting technique --- stoop --- squat --- work-related musculoskeletal disorders --- musculoskeletal modeling --- spine --- shoulder --- back loading --- harmonization --- meta-analysis --- missing data --- multiple imputations --- information technology --- remoteness --- cohort studies --- control parameter reference --- stance assistance --- magnetorheological brake --- body mass index --- walking speed --- ankle torque --- ankle angular velocity --- n/a

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Narrow your search