Search results: Found 12

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Window Functions and Their Applications in Signal Processing

Author:
ISBN: 9781466515840 Year: Pages: 404 DOI: 10.1201/9781315216386 Language: English
Publisher: Taylor & Francis
Subject: Computer Science --- Agriculture (General)
Added to DOAB on : 2020-09-23 00:02:33
License:

Loading...
Export citation

Choose an application

Abstract

Window functions—otherwise known as weighting functions, tapering functions, or apodization functions—are mathematical functions that are zero-valued outside the chosen interval. They are well established as a vital part of digital signal processing. Window Functions and their Applications in Signal Processing presents an exhaustive and detailed account of window functions and their applications in signal processing, focusing on the areas of digital spectral analysis, design of FIR filters, pulse compression radar, and speech signal processing. Comprehensively reviewing previous research and recent developments, this book: Provides suggestions on how to choose a window function for particular applications Discusses Fourier analysis techniques and pitfalls in the computation of the DFT Introduces window functions in the continuous-time and discrete-time domains Considers two implementation strategies of window functions in the time- and frequency domain Explores well-known applications of window functions in the fields of radar, sonar, biomedical signal analysis, audio processing, and synthetic aperture radar

Symmetry in Quantum Optics Models

Author:
ISBN: 9783039218585 9783039218592 Year: Pages: 92 DOI: 10.3390/books978-3-03921-859-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:39:37
License:

Loading...
Export citation

Choose an application

Abstract

Prototypical quantum optics models, such as the Jaynes–Cummings, Rabi, Tavis–Cummings, and Dicke models, are commonly analyzed with diverse techniques, including analytical exact solutions, mean-field theory, exact diagonalization, and so on. Analysis of these systems strongly depends on their symmetries, ranging, e.g., from a U(1) group in the Jaynes–Cummings model to a Z2 symmetry in the full-fledged quantum Rabi model. In recent years, novel regimes of light–matter interactions, namely, the ultrastrong and deep-strong coupling regimes, have been attracting an increasing amount of interest. The quantum Rabi and Dicke models in these exotic regimes present new features, such as collapses and revivals of the population, bounces of photon-number wave packets, as well as the breakdown of the rotating-wave approximation. Symmetries also play an important role in these regimes and will additionally change depending on whether the few- or many-qubit systems considered have associated inhomogeneous or equal couplings to the bosonic mode. Moreover, there is a growing interest in proposing and carrying out quantum simulations of these models in quantum platforms such as trapped ions, superconducting circuits, and quantum photonics. In this Special Issue Reprint, we have gathered a series of articles related to symmetry in quantum optics models, including the quantum Rabi model and its symmetries, Floquet topological quantum states in optically driven semiconductors, the spin–boson model as a simulator of non-Markovian multiphoton Jaynes–Cummings models, parity-assisted generation of nonclassical states of light in circuit quantum electrodynamics, and quasiprobability distribution functions from fractional Fourier transforms.

Fractional Order Systems

Author:
ISBN: 9783039216086 9783039216093 Year: Pages: 114 DOI: 10.3390/books978-3-03921-609-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This book is focused on fractional order systems. Historically, fractional calculus has been recognized since the inception of regular calculus, with the first written reference dated in September 1695 in a letter from Leibniz to L’Hospital. Nowadays, fractional calculus has a wide area of applications in areas such as physics, chemistry, bioengineering, chaos theory, control systems engineering, and many others. In all those applications, we deal with fractional order systems in general. Moreover, fractional calculus plays an important role even in complex systems and therefore allows us to develop better descriptions of real-world phenomena. On that basis, fractional order systems are ubiquitous, as the whole real world around us is fractional. Due to this reason, it is urgent to consider almost all systems as fractional order systems.

Advances in Near Infrared Spectroscopy and Related Computational Methods

Authors: ---
ISBN: 9783039280520 9783039280537 Year: Pages: 496 DOI: 10.3390/books978-3-03928-053-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Analytical Chemistry
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

In the last few decades, near-infrared (NIR) spectroscopy has distinguished itself as one of the most rapidly advancing spectroscopic techniques. Mainly known as an analytical tool useful for sample characterization and content quantification, NIR spectroscopy is essential in various other fields, e.g. NIR imaging techniques in biophotonics, medical applications or used for characterization of food products. Its contribution in basic science and physical chemistry should be noted as well, e.g. in exploration of the nature of molecular vibrations or intermolecular interactions. One of the current development trends involves the miniaturization and simplification of instrumentation, creating prospects for the spread of NIR spectrometers at a consumer level in the form of smartphone attachments—a breakthrough not yet accomplished by any other analytical technique. A growing diversity in the related methods and applications has led to a dispersion of these contributions among disparate scientific communities. The aim of this Special Issue was to bring together the communities that may perceive NIR spectroscopy from different perspectives. It resulted in 30 contributions presenting the latest advances in the methodologies essential in near-infrared spectroscopy in a variety of applications.

Keywords

hyperspectral imaging --- variety discrimination --- Chrysanthemum --- deep convolutional neural network --- DNA --- FTIR spectroscopy --- rapid identification --- PLS-DA --- animal origin --- near-infrared hyperspectral imaging --- raisins --- support vector machine --- pixel-wise --- object-wise --- maize kernel --- hyperspectral imaging technology --- accelerated aging --- principal component analysis --- support vector machine model --- standard germination tests --- blackberries --- Rubus fructicosus --- phenolics --- carotenoids --- bioanalytical applications --- near infrared --- chemometrics --- VIS/NIR hyperspectral imaging --- corn seed --- classification --- freeze-damaged --- image processing --- imaging visualization --- wavelength selection --- NIR spectroscopy --- binary dragonfly algorithm --- ensemble learning --- quantitative analysis modeling --- NIR --- SCiO --- pocket-sized spectrometer --- cheese --- fat --- moisture --- multivariate data analysis --- Fourier-transform near-infrared spectroscopy --- glucose --- fructose --- dry matter --- partial least square regression --- Ewing sarcoma --- Fourier transform infrared spectroscopy --- FTIR --- chemotherapy --- bone cancer --- calibration transfer --- NIR spectroscopy --- PLS --- quantitative analysis model --- melamine --- FT-IR --- NIR spectroscopy --- quantum chemical calculation --- anharmonic calculation --- overtones --- combination bands --- near infrared spectroscopy --- Trichosanthis Fructus --- geographical origin --- chemometric techniques --- crude drugs --- prepared slices --- support vector machine-discriminant analysis --- near-infrared fluorescence --- fluorescent probes --- Zn(II) --- di-(2-picolyl)amine --- living cells --- cellular imaging --- near-infrared (NIR) spectroscopy --- calibration transfer --- affine invariance --- multivariate calibration --- partial least squares (PLS) --- NIR --- direct model transferability --- MicroNIR™ --- SVM --- hier-SVM --- SIMCA --- PLS-DA --- TreeBagger --- PLS --- calibration transfer --- agriculture --- photonics --- imaging --- spectral imaging --- spectroscopy --- handheld near-infrared spectroscopy --- pasta/sauce blends --- partial least squares calibration --- nutritional parameters --- bootstrapping soft shrinkage --- partial least squares --- extra virgin olive oil --- adulteration --- FT-NIR spectroscopy --- near-infrared spectroscopy --- ethanol --- anharmonic quantum mechanical calculations --- isotopic substitution --- overtones --- combinations bands --- seeds vitality --- rice seeds --- near-infrared spectroscopy --- hyperspectral image --- discriminant analysis --- near-infrared spectroscopy --- counter propagation artificial neural network --- detection --- auxiliary diagnosis --- BRAF V600E mutation --- colorectal cancer --- tissue --- paraffin-embedded --- deparaffinized --- stained --- ultra-high performance liquid chromatography --- Folin–Ciocalteu --- total hydroxycinnamic derivatives --- phytoextraction --- near-infrared spectroscopy --- origin traceability --- data fusion --- Paris polyphylla var. yunnanensis --- Fourier transform mid-infrared spectroscopy --- near-infrared spectroscopy --- aquaphotomics --- water --- light --- near infrared spectroscopy --- water-mirror approach --- perturbation --- biomeasurements --- biodiagnosis --- biomonitoring --- Vitis vinifera L. --- proximal sensing --- precision viticulture --- near infrared --- chemometrics --- non-destructive sensor --- NIRS --- osteopathy --- late preterm --- brain --- splanchnic --- Raman spectroscopy --- hyperspectral imaging --- analytical spectroscopy --- counterfeit and substandard pharmaceuticals --- DFT calculations --- chemometrics --- PLSR --- API --- lumefantrine --- artemether --- antimalarial tablets --- FT-NIR spectroscopy --- PLS-R --- water --- glucose --- test set validation --- RMSEP --- hyperspectral image processing --- perfusion measurements --- clinical classifications --- n/a

Joseph Fourier 250th Birthday. Modern Fourier Analysis and Fourier Heat Equation in Information Sciences for the XXIst century

Authors: ---
ISBN: 9783038977469 Year: Pages: 260 DOI: 10.3390/books978-3-03897-747-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-04-05 11:17:10
License:

Loading...
Export citation

Choose an application

Abstract

For the 250th birthday of Joseph Fourier, born in 1768 in Auxerre, France, this MDPI Special Issue will explore modern topics related to Fourier Analysis and Heat Equation. Modern developments of Fourier analysis during the 20th century have explored generalizations of Fourier and Fourier–Plancherel formula for non-commutative harmonic analysis, applied to locally-compact, non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups. One should add the developments, over the last 30 years, of the applications of harmonic analysis to the description of the fascinating world of aperiodic structures in condensed matter physics. The notions of model sets, introduced by Y. Meyer, and of almost periodic functions, have revealed themselves to be extremely fruitful in this domain of natural sciences. The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties. One last comment concerns the fundamental contributions of Fourier analysis to quantum physics: Quantum mechanics and quantum field theory. The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.

Advanced Mathematical Methods: Theory and Applications

Authors: ---
ISBN: 9783039282463 9783039282470 Year: Pages: 198 DOI: 10.3390/books978-3-03928-247-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

The many technical and computational problems that appear to be constantly emerging in various branches of physics and engineering beg for a more detailed understanding of the fundamental mathematics that serves as the cornerstone of our way of understanding natural phenomena. The purpose of this Special Issue was to establish a brief collection of carefully selected articles authored by promising young scientists and the world's leading experts in pure and applied mathematics, highlighting the state-of-the-art of the various research lines focusing on the study of analytical and numerical mathematical methods for pure and applied sciences.

Keywords

ultraparabolic equation --- ultradiffusion process --- probabilistic representation --- mathematical finance --- linear elastostatics --- layer potentials --- fredholmian operators --- fractional differential equations --- fractional derivative --- Abel-type integral --- time delay --- distributed lag --- gamma distribution --- macroeconomics --- Keynesian model --- integral transforms --- Laplace integral transform --- transmutation operator --- generating operator --- integral equations --- differential equations --- operational calculus of Mikusinski type --- Mellin integral transform --- fractional derivative --- fractional integral --- Mittag–Leffler function --- Riemann–Liouville derivative --- Caputo derivative --- Grünwald–Letnikov derivative --- space-time fractional diffusion equation --- fractional Laplacian --- subordination principle --- Mittag-Leffler function --- Bessel function --- exterior calculus --- exterior algebra --- electromagnetism --- Maxwell equations --- differential forms --- tensor calculus --- Fourier Theory --- DFT in polar coordinates --- polar coordinates --- multidimensional DFT --- discrete Hankel Transform --- discrete Fourier Transform --- Orthogonality --- multispecies biofilm --- biosorption --- free boundary value problem --- heavy metals toxicity --- method of characteristics --- relativistic diffusion equation --- Caputo fractional derivatives of a function with respect to another function --- Bessel-Riesz motion --- Mittag–Leffler function --- matrix function --- Schur decomposition --- Laplace transform --- fractional calculus --- central limit theorem --- anomalous diffusion --- stable distribution --- fractional calculus --- power law --- n/a

Recent Development of Electrospinning for Drug Delivery

Authors: --- ---
ISBN: 9783039281404 9783039281411 Year: Pages: 206 DOI: 10.3390/books978-3-03928-141-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Several promising techniques have been developed to overcome the poor solubility and/or membrane permeability properties of new drug candidates, including different fiber formation methods. Electrospinning is one of the most commonly used spinning techniques for fiber formation, induced by the high voltage applied to the drug-loaded solution. With modifying the characteristics of the solution and the spinning parameters, the functionality-related properties of the formulated fibers can be finely tuned. The fiber properties (i.e., high specific surface area, porosity, and the possibility of controlling the crystalline–amorphous phase transitions of the loaded drugs) enable the improved rate and extent of solubility, causing a rapid onset of absorption. However, the enhanced molecular mobility of the amorphous drugs embedded into the fibers is also responsible for their physical–chemical instability. This Special Issue will address new developments in the area of electrospun nanofibers for drug delivery and wound healing applications, covering recent advantages and future directions in electrospun fiber formulations and scalability. Moreover, it serves to highlight and capture the contemporary progress in electrospinning techniques, with particular attention to the industrial feasibility of developing pharmaceutical dosage forms. All aspects of small molecule or biologics-loaded fibrous dosage forms, focusing on the processability, structures and functions, and stability issues, are included.

Keywords

electrospinning --- gentamicin sulfate --- polylactide-co-polycaprolactone --- drug release kinetics --- tissue engineering --- growth factor --- diabetic --- wound healing --- nanocomposite --- electrospinning --- coaxial spinning --- core-sheath nanofibers --- biomedical --- drug delivery --- electrospinning --- scale-up --- processability --- biopharmaceuticals --- oral dosage form --- grinding --- aceclofenac --- nanofiber --- electrospinning --- scanning electron microscopy --- fourier transform infrared spectroscopy --- differential scanning calorimetry --- nanotechnology --- biotechnology --- probiotics --- Lactobacillus --- Lactococcus --- electrospinning --- nanofibers --- drying --- local delivery --- viability --- antibacterial activity --- bacterial bioreporters --- drug release --- electrospinning --- microfibers --- nanofibers --- UV imaging --- wetting --- in situ drug release --- nanofibers --- electrospinning --- poorly water-soluble drug --- piroxicam --- hydroxypropyl methyl cellulose --- polydextrose --- scanning white light interferometry --- nanotechnology --- nanofibers --- traditional electrospinning --- ultrasound-enhanced electrospinning --- drug delivery system --- haemanthamine --- plant-origin alkaloid --- electrospinning --- amphiphilic nanofibers --- self-assembled liposomes --- physical solid-state properties --- drug release --- electrospinning --- PCL --- gelatin --- clove essential oil --- antibacterial --- biocompatibility --- artificial red blood cells --- electrospinning and electrospray --- pectin --- oligochitosan --- hydrogel --- microcapsules --- electrospinning --- wound dressings --- solvent casting --- 3D printing --- polymeric carrier --- n/a

Sol-Gel Chemistry Applied to Materials Science

Author:
ISBN: 9783039213535 9783039213542 Year: Pages: 216 DOI: 10.3390/books978-3-03921-354-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Sol–gel technology is a contemporary advancement in science that requires taking a multidisciplinary approach with regard to its various applications. This book highlights some applications of the sol–gel technology, including protective coatings, catalysts, piezoelectric devices, wave guides, lenses, high-strength ceramics, superconductors, synthesis of nanoparticles, and insulating materials. In particular, for biotechnological applications, biomolecules or the incorporation of bioactive substances into the sol–gel matrix has been extensively studied and has been a challenge for many researchers. Some sol–gel materials are widely applied in light-emitting diodes, solar cells, sensing, catalysis, integration in photovoltaic devices, and more recently in biosensing, bioimaging, or medical diagnosis; others can be considered excellent drug delivery systems. The goal of an ideal drug delivery system is the prompt delivery of a therapeutic amount of the drug to the proper site in the body, where the desired drug concentration can be maintained. The interactions between drugs and the sol–gel system can affect the release rate. In conclusion, the sol–gel synthesis method offers mixing at the molecular level and is able to improve the chemical homogeneity of the resulting composite. This opens new doors not only regarding

Keywords

sol-gel method --- Fourier transform infrared spectroscopy (FTIR) analysis --- bioactivity --- biocompatibility --- sol–gel method --- organic-inorganic hybrids --- chlorogenic acid --- cytotoxicity --- biocompatibility --- silsesquioxanes --- thiol-ene click reaction --- in situ water production --- hydrophobic coatings --- cotton fabric --- paper --- NMR --- wettability --- sol-gel --- hollow sphere --- 1D structure --- sol-gel --- thin-disk laser --- Yb-doped glasses --- aluminosilicate glasses --- photoluminescence --- ultrasonic spray deposition --- tungsten oxide --- lithium lanthanum titanium oxide --- conformal coating --- Li-ion batteries --- sol-gel technique --- biomaterials --- cell proliferation --- cell cycle --- one transistor and one resistor (1T1R) --- organic thin-film transistor (OTFT) --- resistive random access memory (RRAM) --- sol-gel --- lithium-ion battery --- LiMnxFe(1?x)PO4 --- carbon coating --- pseudo-diffusion coefficient --- potential step voltammetry --- electrochemical impedance spectroscopy --- sol-gel --- oxyfluoride glass-ceramics --- nanocrystal --- optical properties --- sol-gel method --- SiO2–based hybrids --- poly(?-caprolactone) --- TG-DSC --- TG-FTIR --- X-ray diffraction analysis --- computer-aided design (CAD) --- mechanical analysis --- finite element analysis (FEA) --- composites --- organic–inorganic hybrid materials --- biomedical applications --- metal oxides --- multi-layer --- surface plasmon resonance --- optical sensors --- computer-aided design (CAD) --- mechanical analysis --- finite element analysis (FEA) --- composites --- hybrid materials --- biomedical applications

Stochastic Processes: Theory and Applications

Authors: --- ---
ISBN: 9783039219629 9783039219636 Year: Pages: 216 DOI: 10.3390/books978-3-03921-963-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics --- Statistics
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The aim of this special issue is to publish original research papers that cover recent advances in the theory and application of stochastic processes. There is especial focus on applications of stochastic processes as models of dynamic phenomena in various research areas, such as queuing theory, physics, biology, economics, medicine, reliability theory, and financial mathematics. Potential topics include, but are not limited to: Markov chains and processes; large deviations and limit theorems; random motions; stochastic biological model; reliability, availability, maintenance, inspection; queueing models; queueing network models; computational methods for stochastic models; applications to risk theory, insurance and mathematical finance.

Keywords

measure of information --- cumulative inaccuracy --- mutual information --- lower record values --- parabolic equation --- Cauchy problem --- Monte Carlo method --- unbiased estimator --- von-Neumann–Ulam scheme --- compound poisson insurance risk model --- expected discounted penalty function --- estimation --- Fourier transform --- Fourier-cosine series --- multidimensional birth-death process --- inhomogeneous continuous-time Markov chain --- rate of convergence --- one dimensional projection --- Wiener–Poisson risk model --- survival probability --- Nonparametric threshold estimation --- wet periods --- total precipitation volume --- asymptotic approximation --- extreme order statistics --- random sample size --- testing statistical hypotheses --- queueing systems --- rate of convergence --- non-stationary --- Markovian queueing models --- limiting characteristics --- queuing network --- retrials --- state-dependent marked Markovian arrival process --- wireless telecommunication networks --- time-dependent queue-length probability --- discrete-time Geo/D/1 queue --- closed-form solution --- Monte Carlo method --- quasi-Monte Carlo method --- Koksma-Hlawka inequality --- quasi-random sequences --- stochastic processes --- processor heating and cooling --- markovian arrival process --- phase-type service time distribution --- impatience --- Quasi-Birth-and-Death process --- matrix-geometric solution --- truncated distribution --- Markovian arrival process --- multi-class arrival processes --- product form --- equity-linked death benefits --- Fourier cosine series expansion --- guaranteed minimum death benefit --- option --- valuation --- Lévy process --- compound Poisson risk model --- generalized Gerber–Shiu discounted penalty function --- Laplace transform --- Dickson–Hipp operator --- recursive formula

Emerging Memory and Computing Devices in the Era of Intelligent Machines

Author:
ISBN: 9783039285020 / 9783039285037 Year: Pages: 276 DOI: 10.3390/books978-3-03928-503-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Computing systems are undergoing a transformation from logic-centric towards memory-centric architectures, where overall performance and energy efficiency at the system level are determined by the density, performance, functionality and efficiency of the memory, rather than the logic sub-system.

Keywords

3D-stacked --- DRAM --- in-DRAM cache --- low-latency --- low-power --- resistive memory --- crossbar --- in-memory computing --- analogue computing --- matrix-vector multiplication --- ECG --- voltage-controlled magnetic anisotropy --- magnetoresistive random access memory --- magnetic tunnel junction --- bioelectronic devices --- bionanohybrid material --- biomemory --- biologic gate --- bioprocessor --- protein --- nucleic acid --- nanoparticles --- SONOS --- flash memory --- charge spreading --- plasma treatment --- Oxygen-related trap --- data retention --- BCH --- decoder --- iBM --- GPU --- hybrid --- flash memory --- Galois field --- CUDA --- in-memory computing --- logic-in-memory --- non-von Neumann architecture --- configurable logic-in-memory architecture --- memory wall --- convolutional neural networks --- emerging technologies --- perpendicular Nano Magnetic Logic (pNML) --- silicon oxide-based memristors --- resistance switching mechanism --- variability --- conductive filament --- Weibull distribution --- quantum point contact --- real-time system --- dynamic voltage scaling --- task placement --- low-power technique --- nonvolatile memory --- neuromorphic system --- Hebbian training --- guide training --- memristor --- image classification --- STT-MRAM --- flip-flop --- power gating --- low-power --- bipolar resistive switching characteristics --- annealing temperatures --- solution-based dielectric --- resistive random access memory (RRAM) --- multi-level cell --- phase change memory --- programmable ramp-down current pulses --- Fast Fourier Transform --- in-memory computing --- associative processor --- non-von neumann architecture --- in-memory computing --- memristor --- RISC-V --- Internet of things --- blockchain --- U-shape recessed channel --- floating gate --- neuromorphic computing --- MCU (microprogrammed control unit) --- chalcogenide --- electrochemical metallization cell --- electrochemical metallization (ECM) --- ion conduction --- memristor --- self-directed channel (SDC) --- memristor --- crossbar array --- wire resistance --- synaptic weight --- character recognition --- n/a

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (11)

Taylor & Francis (1)


License

CC by-nc-nd (12)


Language

english (10)

eng (2)


Year
From To Submit

2020 (5)

2019 (6)

2014 (1)