Search results: Found 2

Listing 1 - 2 of 2
Sort by
Recent Advances in Biocatalysis and Metabolic Engineering for Biomanufacturing

Author:
ISBN: 9783039215744 9783039215751 Year: Pages: 278 DOI: 10.3390/books978-3-03921-575-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Biotechnology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The use of biocatalysts, including enzymes and metabolically engineered cells, has attracted a great deal of attention in the chemical and bio-industry, because biocatalytic reactions can be conducted under environmentally-benign conditions and in more sustainable ways. The catalytic efficiency and chemo-, regio-, and stereo-selectivity of enzymes can be enhanced and modulated using protein engineering. Metabolic engineering seeks to enhance cellular biosynthetic productivity of target metabolites via controlling and redesigning metabolic pathways using multi-omics analysis, genome-scale modeling, metabolic flux control, and reconstruction of novel pathways. The aim of this book is to cover the recent advances in biocatalysis and metabolic engineering for biomanufacturing of biofuels, chemicals, biomaterials, and pharmaceuticals. Reviews and original research articles on the development of new strategies to improve the catalytic efficiency of enzymes, biosynthetic capability of cell factories, and their applications in production of various bioproducts and chemicals are included.

Keywords

artificial self-sufficient P450 --- bioplastics --- dodecanoic acid --- Nylon 12 --- ?-aminododecanoic acid --- immobilization --- fluorescein diacetate --- polyurethane foam --- biofilm --- total enzymatic activity --- biocatalysis --- Combi-CLEAs --- cascade reactions --- immobilization --- Myceliophthora --- glyoxal oxidase --- 5-hydroxymethylfurfural --- aerobic methane bioconversion --- bioreactor --- string film reactor --- mass transfer performance --- cross-linked enzyme aggregate --- amyloglucosidase --- magnetic nanoparticles --- bovine serum albumin --- polyethyleneimine --- starch hydrolysis --- Eversa --- interfacial activation --- lipase immobilization --- enzyme stabilization --- enzyme modulation --- metabolic engineering --- synthetic biology --- 3-hydroxypropionic acid --- microbial production --- fatty acid synthesis --- acetate --- redox enzymes --- FTIR spectroscopy --- small molecules --- Corynebacterium glutamicum --- Pvgb --- tunable expression system --- expression vectors --- synthetic biology --- Vitreoscilla --- vgb --- biocatalysts --- biocatalytic reaction --- Methylosinus sporium strain 5 --- soluble methane monooxygenase --- C–H activation --- O2 activation --- synthetic biology --- metabolic engineering --- microbial cell factory --- synthetic metabolic pathways --- mannose --- magnetic nanoparticles --- immobilization --- whole cell --- specific recognition --- 12-hydroxydodecanoic acid --- dodecanoic acid --- CYP153A --- whole-cell biotransformation --- Candida antarctica Lipase B --- transesterification --- polymer functionalization --- tetraethylene glycol --- poly(ethylene glycol) --- hydrogenase --- bio-hydrogen --- chemicals addition --- review --- (?)-?-bisabolol --- mevalonate (MVA) --- mevalonate kinase 1 --- Methanosarcina mazei --- fed-batch fermentation --- monoterpene --- prokaryotic microbial factory --- metabolic engineering --- MEP pathway --- MEV pathway --- n/a

Advances in Polyhydroxyalkanoate (PHA) Production, Volume 2

Author:
ISBN: 9783039286409 / 9783039286416 Year: Pages: 202 DOI: 10.3390/books978-3-03928-641-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Biotechnology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Nowadays, we are witnessing highly dynamic research activities related to the intriguing field of biodegradable materials with plastic-like properties. These activities are stimulated by the strengthened public awareness of prevailing ecological issues connected to growing piles of plastic waste and increasing greenhouse gas emissions; this goes hand-in-hand with the ongoing depletion of fossil feedstocks, which are traditionally used to produce full carbon backbone polymers. Polyhydroxyalkanoate (PHA) biopolyesters, a family of plastic-like materials with versatile material properties, are increasing considered to be a future-oriented solution for diminishing these concerns. PHA production is based on renewable resources and occurs in a bio-mediated fashion through the action of living organisms. If accomplished in an optimized way, PHA production and the entire PHA lifecycle are embedded into nature´s closed cycles of carbon. Sustainable and efficient PHA production requires understanding and improvement of all the individual process steps. Holistic improvement of PHA production, applicable on an industrially relevant scale, calls for, inter alia, consolidated knowledge about the enzymatic and genetic particularities of PHA-accumulating organisms, an in-depth understanding of the kinetics of the bioprocess, the selection of appropriate inexpensive fermentation feedstocks, tailoring of PHA composition at the level of its monomeric constituents, optimized biotechnological engineering, and novel strategies for PHA recovery from biomass characterized by low energy and chemical requirements. This Special Issue represents a comprehensive compilation of articles in which these individual aspects have been addressed by globally recognized experts.

Keywords

polyhydroxyalkanoate (PHA), bioprocess design --- carbon dioxide --- cyanobacteria --- upstream processing --- Archaea --- bioeconomy --- biopolyester --- downstream processing --- extremophiles --- haloarchaea --- Haloferax --- halophiles --- polyhydroxyalkanoates --- salinity --- polyhydroxyalkanoates --- terpolymer --- P(3HB-co-3HV-co-4HB) --- Cupriavidus malaysiensis --- polyhydroxyalkanoates --- biomedicine --- biomaterials --- Poly(3-hydroxybutyrate) --- tissue engineering --- wound healing --- delivery system --- poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHVB) --- poly(3-hydroxybutyrate-co-4-hydroxybutyrate) --- bubble column bioreactor --- COMSOL --- microorganism --- PHB --- simulation --- polyhydroxyalkanoate --- PHA --- process analytical technologies --- PAT --- plant oil --- high-cell-density fed-batch --- photon density wave spectroscopy --- PDW --- Ralstonia eutropha --- Cupriavidus necator --- on-line --- in-line --- polyhydroxyalkanoates --- fed-batch --- productivity --- Pseudomonas --- bioreactor --- microaerophilic --- PHA --- viscosity --- non-Newtonian fluid --- fed-batch fermentation --- oxygen transfer --- Pseudomonas putida --- medium-chain-length polyhydroxyalkanoate (mcl-PHA) --- alginate --- biosurfactants --- biopolymer --- Pseudomonas --- blends --- film --- polyhydroxyalkanoates processing --- electrospinning --- additive manufacturing --- selective laser sintering --- fused deposition modeling --- computer-aided wet-spinning --- polyhydroxybutyrate --- tequila bagasse --- hydrolysate detoxification --- activated charcoal --- phenolic compounds --- biomedical application --- cyanobacteria --- feedstocks --- gaseous substrates --- haloarchaea --- high cell density cultivation --- in-line monitoring --- PHA composition --- PHA processing --- polyhydroxyalkanoate --- process engineering --- process simulation --- Pseudomonas sp. --- rheology --- terpolyester --- waste streams

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (1)

english (1)


Year
From To Submit

2020 (1)

2019 (1)