Search results: Found 10

Listing 1 - 10 of 10
Sort by
Overwhelmed by overflows?

Authors: ---
ISBN: 9789198469813 Year: Pages: 224 Language: English
Publisher: Lund University Press
Subject: Business and Management --- Economics --- Sociology
Added to DOAB on : 2019-11-14 11:21:03
License:

Loading...
Export citation

Choose an application

Abstract

This transdisciplinary volume investigates the ways in which people and organisations deal with the overflow of information, goods or choices. It explores two main themes: the emergence of overflows and the management of overflows, in the sense of either controlling or coping with them. Individual chapters show the management of overflows taking place in various social settings, periods and political contexts. This includes attempts by states to manage future consumption overflow in post-war Easter European, contemporary economies of sharing, managing overflow in health care administration, overflow problems in mass travel and migration, overflow in digital services and the overflow that scholars face in dealing with an abundance of publications.

Keywords

overflow --- framing --- abundance --- excess --- management

Unhealthy Housing

Authors: ---
ISBN: 9780203974254 9780419154105 9780415511711 9781135832742 9781135832735 9781135832698 Year: DOI: 10.4324/9780203974254 Language: English
Publisher: Taylor & Francis
Subject: Architecture
Added to DOAB on : 2019-11-08 11:21:05
License:

Loading...
Export citation

Choose an application

Abstract

Unhealthy Housing presents an analysis of the research into the health implications of housing and the significance for legal regulation of housing conditions. Key experts present short papers, together with an overview to give an evaluation of the significance of housing on the health of occupiers.

Keywords

environmental --- officers --- high --- rise --- home --- accidents --- cockroach --- infestation --- damp --- excess

Rethinking Capitalist Development

Authors: ---
Book Series: Routledge Frontiers of Political Economy ISBN: 9780203645901 9780415159593 9780415651486 9781134722723 9781134722716 9781134722679 Year: DOI: 10.4324/9780203645901 Language: English
Publisher: Taylor & Francis
Subject: Business and Management --- Economics
Added to DOAB on : 2019-11-08 11:21:13
License:

Loading...
Export citation

Choose an application

Abstract

This collection honours the work of the eminent economist Josef Steindl. Steindl's work is illuminated through a critical appraisal of its central constructs with a focus on its relevance to current economic conditions. This collection charts the thinking of one of the leading economic theorists of the twentieth century.

Keywords

josef --- steindl --- american --- capitalism --- capacity --- utilization --- profit --- margins --- excess --- aggregate

Drop, Bubble and Particle Dynamics in Complex Fluids

Authors: ---
ISBN: 9783039282968 9783039282975 Year: Pages: 142 DOI: 10.3390/books978-3-03928-297-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The presence of drops, bubbles, and particles affects the behavior and response of complex multiphase fluids. In many applications, these complex fluids have more than one non-Newtonian component, e.g., polymer melts, liquid crystals, and blood plasma. In fact, most fluids exhibit non-Newtonian behaviors, such as yield stress, viscoelastity, viscoplasticity, shear thinning, or shear thickening, under certain flow conditions. Even in the complex fluids composed of Newtonian components, the coupling between different components and the evolution of internal boundaries often lead to a complex rheology. Thus the dynamics of drops, bubbles, and particles in both Newtonian fluids and non-Newtonian fluids are crucial to the understanding of the macroscopic behavior of complex fluids. This Special Issue aims to gather a wide variety of papers that focus on drop, bubble and particle dynamics in complex fluids. Potential topics include, but are not limited to, drop deformation, rising drops, pair-wise drop interactions, drop migration in channel flows, and the interaction of particles with flow systems such as pastes and slurries, glasses, suspensions, and emulsions. We emphasize numerical simulations, but also welcome experimental and theoretical contributions.

Solid Phase Extraction: State of the Art and Future Perspectives

Author:
ISBN: 9783039211586 9783039211593 Year: Pages: 176 DOI: 10.3390/books978-3-03921-159-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book is a collection of 13 innovative papers describing the state of the art and the future perspectives in solid-phase extraction covering several analytical fields prior to the use of gas or liquid chromatographic analysis. New sorptive materials are presented including carbon nanohorn suprastructures on paper support, melamine sponge functionalized with urea–formaldehyde co-oligomers, chiral metal–organic frameworks, UiO-66-based metal–organic frameworks, and fabric phase sorptive media for various applications. Solid-phase extraction can be applied in several formats aside from the conventional cartridges or mini-column approach, e.g., online solid-phase extraction, dispersive solid-phase microextraction, and in-syringe micro-solid-phase extraction can be very helpful for analyte pre-concentration and sample clean-up. Polycyclic musks in aqueous samples, 8-Nitroguanine in DNA by chemical derivatization antibacterial diterpenes from the roots of salvia prattii, perfluoroalkyl substances (PFASs) in aater samples by bamboo charcoal-based SPE, parabens in environmental water samples, benzotriazoles as environmental pollutants, organochlorine pesticide residues in various fruit juices and water samples and synthetic peptide purification are among the applications cited in this collection. All these outstanding contributions highlight the necessity of this analytical step, present the advantages and disadvantages of each method and focus on the green analytical chemistry guidelines that have to be fulfilled in current analytical practices.

Causes and Consequences of Species Diversity in Forest Ecosystems

Authors: ---
ISBN: 9783039213092 9783039213108 Year: Pages: 272 DOI: 10.3390/books978-3-03921-310-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

What are the causes and consequences of species diversity in forested ecosystems, and how is this species diversity being affected by rapid environmental and climatic change, movement of invertebrate and vertebrate herbivores into new biogeographic regions, and expanding human populations and associated shifts in land-use patterns? In this book, we explore these questions for assemblages of forest trees, shrubs, and understory herbs at spatial scales ranging from small plots to large forest dynamics plots, at temporal scales ranging from seasons to centuries, in both temperate and tropical regions, and across rural-to-urban gradients in land use.

Keywords

Ericaceae --- variation partitioning --- climate --- species-area relationship --- mid-domain effect --- spatial patterns --- individual species-area relationship --- tropical evergreen mixed forest --- competition and facilitation --- Vietnam --- microarthropod --- diversity --- seasonal variations --- stand development --- biodiversity --- climate --- human footprint --- productivity --- topography --- USDA Forest Service --- herbaceous layer --- excess nitrogen --- canopy structure --- temperate forests --- Fagus sylvatica --- Pinus sylvestris --- Picea abies --- Pseudotsuga menziesii --- forest management --- tree species diversity --- forest conversion --- gamma diversity --- landscape scale --- Biodiversity Exploratories --- climate change --- temperature --- precipitation --- Hubbard Brook --- elevational shifts --- mountains --- species diversity --- structural complexity --- legacies --- wind damage --- uprooting --- trunk breakage --- understory plant communities --- natural disturbance-based silviculture --- forest management --- species conservation --- northern hardwood forests --- abundance --- Bray-Curtis --- codispersion analysis --- Smithsonian ForestGEO --- Shannon diversity --- Simpson diversity --- spatial analysis --- species richness --- windthrow --- tornado --- tree species --- disturbance severity --- tree regeneration --- salvaging --- salvage logging --- succession --- Climatic change --- species diversity --- potential habitats --- China --- Maxent --- Salicaceae --- herbaceous perennial species --- household respondents --- questionnaire survey --- species richness --- woody species --- temperate forests --- species richness --- assemblage lineage diversity --- phylogenetic diversity --- evolutionary diversity --- United States --- trees --- TILD

Creep and High Temperature Deformation of Metals and Alloys

Authors: ---
ISBN: 9783039218783 9783039218790 Year: Pages: 212 DOI: 10.3390/books978-3-03921-879-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mining and Metallurgy
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated.This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.

Solution Models based on Symmetric and Asymmetric Information

Authors: --- ---
ISBN: 9783039210060 9783039210077 Year: Pages: 202 DOI: 10.3390/books978-3-03921-007-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue covers symmetry and asymmetry phenomena occurring in real-life problems. We invited authors to submit their theoretical or experimental research presenting engineering and economic problem solution models dealing with the symmetry or asymmetry of different types of information. The issue gained interest in the research community and received many submissions. After rigorous scientific evaluation by editors and reviewers, nine papers were accepted and published. The authors proposed different MADM and MODM solution models as integrated tools to find a balance between the components of sustainable global development, to find a symmetry axis concerning goals, risks, and constraints to cope with the complicated problems. Most approaches suggested decision models under uncertainty, combining the usual decision-making methods with interval-valued fuzzy or rough sets theory, also Z numbers. The application fields of the proposed models involved both problems of technological sciences and social sciences. The papers cover three essential areas: engineering, economy, and management. We hope that a summary of the Special Issue as provided here will encourage a detailed analysis of the papers included in the Printed Edition.

Keywords

multi-criteria decision-making (MCDM) --- group decision-making --- interval type-2 fuzzy set (IT2FS) --- subjective weights --- criteria weights --- Step-wise Weight Assessment Ratio Analysis (SWARA) --- multiple attribute decision making (MADM) --- neutrosophic numbers --- 2-tuple linguistic neutrosophic numbers set (2TLNNSs) --- Bonferroni mean (BM) operator --- generalized Bonferroni mean (GBM) operator --- dual generalized Bonferroni mean (DGBM) operator --- dual generalized geometric Bonferroni mean (DGGBM) operator --- green supplier selection --- green supply chain management --- Pythagorean fuzzy set --- normal cloud --- MCGDM --- backward cloud transformation --- MCDM --- the criteria of the weights --- Bayes’ theorem --- combining the weights --- symmetry of the method --- IDOCRIW --- FAHP --- evaluating the quality of distant courses --- optimal dividend --- capital injection --- salvage value --- transaction cost --- excess-of-loss reinsurance --- thrust --- data logger --- sensor --- quadcopter --- measurement --- control system --- stability --- data envelopment analysis --- Z-numbers --- full fuzzy environment --- fuzzy efficiency --- rough ARAS --- transport --- performance --- logistics --- MCDM --- probabilistic systems analysis --- nonlinear dynamics --- public management --- pattern formation --- resources distribution --- population sizes --- information theory --- oscillations --- hybrid problem solution models --- multiple-criteria decision-making (MCDM) --- hybrid MCDM --- criteria weight assessment --- fuzzy sets --- rough sets --- Z-numbers --- neutrosophic numbers --- Bonferroni mean (BM) operator --- engineering problems --- economic decisions

Fluid Flow in Fractured Porous Media

Authors: ---
ISBN: 9783039214235 9783039214242 Year: Volume: 1 Pages: 578 DOI: 10.3390/books978-3-03921-424-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

scanning electron microscope (SEM) images --- permeability --- high temperature --- Darcy’s law --- confining pressures --- chemical grouts --- grain size of sand --- initial water contained in sand --- grouted sand --- macroscopic mechanical behaviors --- microstructure characteristics --- ductile failure --- gas concentration --- gob-side entry retaining (GER) --- limestone roof --- roof-cutting resistance --- roadside backfill body (RBB) --- solid backfill coal mining --- goaf --- water soaked height --- loose gangue backfill material --- deformation --- crushing ratio --- fracture grouting --- cement–silicate grout --- geophysical prospecting --- seepage --- Yellow River Embankment --- contiguous seams --- water-dripping roadway --- roadway deformation --- bolt support --- pervious concrete --- permeability coefficient --- porosity --- pore distribution characteristics --- strength --- soil–structure interface --- internal erosion --- critical hydraulic gradient --- orthogonal tests --- Pseudo Steady-State (PPS) constant --- finite-conductivity fracture --- conductivity-influence function --- normalized conductivity-influence function --- circular closed reservoir --- glutenite --- gravel --- hydraulic fracture --- numerical simulation --- propagation --- glauberite cavern for storing oil &amp --- gas --- thermal-hydrological-chemical interactions --- temperature --- brine concentration --- microstructure --- micro-CT --- damage --- cyclic heating and cooling --- physical and mechanical parameters --- failure mode --- acoustic emission --- anisotropy --- bedding plane orientation --- coal --- gas --- adsorption–desorption --- laboratory experiment --- pore pressure --- hydro-mechanical coupling --- fracture closure --- constitutive model --- effective stress --- debris flow --- dynamic characteristics --- numerical analysis --- debris-resisting barriers --- coal measures sandstone --- creep characteristics --- seepage pressure --- seepage-creep --- microscopic morphology --- Darcy flow --- heterogeneity --- numerical manifold method --- high-order --- refraction law --- hydraulic fracture network --- cohesive element method --- coal seams --- fracture propagation --- discontinuous natural fracture --- secondary fracture --- fault water inrush --- coupled THM model --- nonlinear flow in fractured porous media --- numerical model --- warning levels of fault water inrush --- bentonite-sand mixtures --- differential settlement --- deformation --- hydraulic conductivity --- crack --- geogrid --- enhanced permeability --- deviatoric stress --- mechanical behavior transition --- CH4 seepage --- volumetric strain --- strain-based percolation model --- rock-soil mechanics --- soft filling medium --- segmented grouting --- split grouting --- model experiment --- reinforcement mechanism --- longwall mining --- gob behaviors --- stress relief --- permeability --- gas drainage --- hard and thick magmatic rocks --- orthogonal ratio test --- similar simulation --- fracture --- bed separation --- disaster-causing mechanism --- artificial joint rock --- shear-flow coupled test --- hydraulic aperture --- roughness --- seepage pressure --- mixing --- conservative solute --- fractal --- roughness --- fracture --- transversely isotropic rocks --- failure mechanism --- particle flow modeling --- interface --- n/a --- fractured porous rock mass --- grouting experiment --- visualization system --- flow law --- layered progressive grouting --- sandstone and mudstone particles --- rheological deformation --- segmented rheological model --- rheological limit strain --- rheological test --- water-rock interaction --- dry-wet cycles --- slope stability --- laboratory experiment --- mechanical properties --- Xinjiang --- land reclamation --- management period --- soil particle size --- fluid flow in reclaimed soil --- effluents --- soil properties --- cohesive soils --- contamination --- time variation --- stabilization --- mixer --- viscoelastic fluid --- pore structure --- orthogonal test --- fluid–solid coupling theory --- similar-material --- regression equation --- optimum proportioning --- hydraulic fracturing --- gas fracturing --- oriented perforation --- fracture propagation --- damage mechanics --- fluid viscosity --- CO2 flooding --- supercritical CO2 --- CO2 geological storage --- tight sandstone gas reservoirs --- enhanced gas recovery --- flotation --- coal particle --- collision angle --- initial settlement position --- particle velocity --- adhesion efficiency --- green mining --- paste-like slurry --- XRD --- intelligent torque rheometer --- on-site monitoring --- cyclic wetting-drying --- deterioration --- sandstone --- mudstone --- elastic modulus --- uniaxial compressive strength --- permeability characteristics --- grading broken gangue --- compressive stress --- compression deformation --- mine shaft --- alternate strata --- surrounding rock --- shaft lining --- relief excavation --- consolidation process --- unsaturated soil --- semi-analytical solution --- impeded drainage boundary --- excess pore-pressures --- coalbed methane (CBM) --- soft coal masses --- pore structure --- fractal pore characteristics --- hydraulic fractures --- PPCZ --- multitude parameters --- propagation pattern --- stress interference --- naturally fracture --- filtration effects --- grout penetration --- unified pipe-network method --- two-phase flow --- fractured porous medium --- new cementitious material --- cement-based paste discharge --- XRD --- TG/DTG --- SEM --- MIP --- mechanical behaviors --- rock fracture --- shear-flow coupled test --- constant normal stiffness conditions --- transmissivity --- hydraulic aperture --- water inrush prevention --- backfill mining --- strata movement --- ground pressure --- floor failure depth --- water–rock interaction --- degradation mechanism --- mixed mode fracture resistance --- fracture criteria --- T-stress --- hydro-power --- high-steep slope --- fractured rock --- permeability --- seepage control --- gas-bearing coal --- electrical potential --- charge separation --- gas adsorption --- damage evolution --- Unsaturation --- chloride --- concrete --- coupling model --- numerical calculation --- debris flow --- forecasting --- rainfall-unstable soil coupling mechanism(R-USCM) --- scoops3D --- Jiaohe --- non-aqueous phase liquid --- finite element method --- two-phase flow --- mixed-form formulation --- FLAC --- pore structure --- movable fluid --- tight sandstones --- Ordos Basin --- tectonically deformed coal --- coal and gas outburst --- coal-like material --- mechanical properties --- deformation feature --- adsorption/desorption properties --- minerals --- mechanical properties --- uniaxial compressive strength --- crack distribution characteristics --- discrete element method --- lignite --- nitric acid modification --- pore structure --- surface characteristics --- adsorption performance --- n/a

Fluid Flow in Fractured Porous Media

Authors: ---
ISBN: 9783039214730 9783039214747 Year: Volume: 2 Pages: 492 DOI: 10.3390/books978-3-03921-474-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

scanning electron microscope (SEM) images --- permeability --- high temperature --- Darcy’s law --- confining pressures --- chemical grouts --- grain size of sand --- initial water contained in sand --- grouted sand --- macroscopic mechanical behaviors --- microstructure characteristics --- ductile failure --- gas concentration --- gob-side entry retaining (GER) --- limestone roof --- roof-cutting resistance --- roadside backfill body (RBB) --- solid backfill coal mining --- goaf --- water soaked height --- loose gangue backfill material --- deformation --- crushing ratio --- fracture grouting --- cement–silicate grout --- geophysical prospecting --- seepage --- Yellow River Embankment --- contiguous seams --- water-dripping roadway --- roadway deformation --- bolt support --- pervious concrete --- permeability coefficient --- porosity --- pore distribution characteristics --- strength --- soil–structure interface --- internal erosion --- critical hydraulic gradient --- orthogonal tests --- Pseudo Steady-State (PPS) constant --- finite-conductivity fracture --- conductivity-influence function --- normalized conductivity-influence function --- circular closed reservoir --- glutenite --- gravel --- hydraulic fracture --- numerical simulation --- propagation --- glauberite cavern for storing oil &amp --- gas --- thermal-hydrological-chemical interactions --- temperature --- brine concentration --- microstructure --- micro-CT --- damage --- cyclic heating and cooling --- physical and mechanical parameters --- failure mode --- acoustic emission --- anisotropy --- bedding plane orientation --- coal --- gas --- adsorption–desorption --- laboratory experiment --- pore pressure --- hydro-mechanical coupling --- fracture closure --- constitutive model --- effective stress --- debris flow --- dynamic characteristics --- numerical analysis --- debris-resisting barriers --- coal measures sandstone --- creep characteristics --- seepage pressure --- seepage-creep --- microscopic morphology --- Darcy flow --- heterogeneity --- numerical manifold method --- high-order --- refraction law --- hydraulic fracture network --- cohesive element method --- coal seams --- fracture propagation --- discontinuous natural fracture --- secondary fracture --- fault water inrush --- coupled THM model --- nonlinear flow in fractured porous media --- numerical model --- warning levels of fault water inrush --- bentonite-sand mixtures --- differential settlement --- deformation --- hydraulic conductivity --- crack --- geogrid --- enhanced permeability --- deviatoric stress --- mechanical behavior transition --- CH4 seepage --- volumetric strain --- strain-based percolation model --- rock-soil mechanics --- soft filling medium --- segmented grouting --- split grouting --- model experiment --- reinforcement mechanism --- longwall mining --- gob behaviors --- stress relief --- permeability --- gas drainage --- hard and thick magmatic rocks --- orthogonal ratio test --- similar simulation --- fracture --- bed separation --- disaster-causing mechanism --- artificial joint rock --- shear-flow coupled test --- hydraulic aperture --- roughness --- seepage pressure --- mixing --- conservative solute --- fractal --- roughness --- fracture --- transversely isotropic rocks --- failure mechanism --- particle flow modeling --- interface --- n/a --- fractured porous rock mass --- grouting experiment --- visualization system --- flow law --- layered progressive grouting --- sandstone and mudstone particles --- rheological deformation --- segmented rheological model --- rheological limit strain --- rheological test --- water-rock interaction --- dry-wet cycles --- slope stability --- laboratory experiment --- mechanical properties --- Xinjiang --- land reclamation --- management period --- soil particle size --- fluid flow in reclaimed soil --- effluents --- soil properties --- cohesive soils --- contamination --- time variation --- stabilization --- mixer --- viscoelastic fluid --- pore structure --- orthogonal test --- fluid–solid coupling theory --- similar-material --- regression equation --- optimum proportioning --- hydraulic fracturing --- gas fracturing --- oriented perforation --- fracture propagation --- damage mechanics --- fluid viscosity --- CO2 flooding --- supercritical CO2 --- CO2 geological storage --- tight sandstone gas reservoirs --- enhanced gas recovery --- flotation --- coal particle --- collision angle --- initial settlement position --- particle velocity --- adhesion efficiency --- green mining --- paste-like slurry --- XRD --- intelligent torque rheometer --- on-site monitoring --- cyclic wetting-drying --- deterioration --- sandstone --- mudstone --- elastic modulus --- uniaxial compressive strength --- permeability characteristics --- grading broken gangue --- compressive stress --- compression deformation --- mine shaft --- alternate strata --- surrounding rock --- shaft lining --- relief excavation --- consolidation process --- unsaturated soil --- semi-analytical solution --- impeded drainage boundary --- excess pore-pressures --- coalbed methane (CBM) --- soft coal masses --- pore structure --- fractal pore characteristics --- hydraulic fractures --- PPCZ --- multitude parameters --- propagation pattern --- stress interference --- naturally fracture --- filtration effects --- grout penetration --- unified pipe-network method --- two-phase flow --- fractured porous medium --- new cementitious material --- cement-based paste discharge --- XRD --- TG/DTG --- SEM --- MIP --- mechanical behaviors --- rock fracture --- shear-flow coupled test --- constant normal stiffness conditions --- transmissivity --- hydraulic aperture --- water inrush prevention --- backfill mining --- strata movement --- ground pressure --- floor failure depth --- water–rock interaction --- degradation mechanism --- mixed mode fracture resistance --- fracture criteria --- T-stress --- hydro-power --- high-steep slope --- fractured rock --- permeability --- seepage control --- gas-bearing coal --- electrical potential --- charge separation --- gas adsorption --- damage evolution --- Unsaturation --- chloride --- concrete --- coupling model --- numerical calculation --- debris flow --- forecasting --- rainfall-unstable soil coupling mechanism(R-USCM) --- scoops3D --- Jiaohe --- non-aqueous phase liquid --- finite element method --- two-phase flow --- mixed-form formulation --- FLAC --- pore structure --- movable fluid --- tight sandstones --- Ordos Basin --- tectonically deformed coal --- coal and gas outburst --- coal-like material --- mechanical properties --- deformation feature --- adsorption/desorption properties --- minerals --- mechanical properties --- uniaxial compressive strength --- crack distribution characteristics --- discrete element method --- lignite --- nitric acid modification --- pore structure --- surface characteristics --- adsorption performance --- n/a

Listing 1 - 10 of 10
Sort by
Narrow your search