Search results: Found 3

Listing 1 - 3 of 3
Sort by
Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions

Author:
ISBN: 9783038979920 9783038979937 Year: Pages: 212 DOI: 10.3390/books978-3-03897-993-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Oral health is general health. If the oral cavity is kept healthy, the whole body is always healthy. Bacteria in the oral cavity do not stay in the oral cavity, but rather they travel throughout the body and can induce various diseases. Periodontal pathogens are involved in tooth loss. The number of remaining teeth decreases with age. People with more residual teeth can bite food well and live longer with lower incidence of dementia. There are many viruses in the oral cavity that also cause various diseases. Bacteria and viruses induce and aggravate inflammation, and therefore should be removed from the oral cavity. In the natural world, there are are many as yet undiscovered antiviral, antibacterial and anti-inflammatory substances. These natural substances, as well as chemically modified derivatives, help our oral health and lead us to more fulfilling, high quality lives. This Special Issue, entitled “Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions”, was written by specialists from a diverse variety of fields. It serves to provide readers with up-to-date information on incidence rates in each age group, etiology and treatment of stomatitis, and to investigate the application of such treatments as oral care and cosmetic materials.

Keywords

metabolomics --- oral cell --- benzaldehyde --- eugenol --- inflammation --- cytotoxicity --- stomatitis --- recurrent aphthous stomatitis --- oral lichen planus --- CCN2 --- glucocorticoids --- alkaloids --- anti-human immunodeficiency virus (HIV) --- antiviral --- natural product --- human virus --- inflammatory disease --- stomatitis --- periodontitis --- anti-osteoclast activity --- cepharanthin --- herbal medicine --- natural product --- arachidonic acid cascade --- allergic rhinitis --- mice --- quercetin --- thioredoxin --- nasal epithelial cell --- production --- increase --- in vitro --- in vivo --- nutritionally variant streptococci --- antimicrobial susceptibilities --- oral microbiota --- infective endocarditis --- kampo formula --- traditional Japanese herbal medicine --- stomatitis --- mucositis --- Hangeshashinto --- polyphenol --- chromone --- lignin-carbohydrate complex --- alkaline extract --- Kampo medicine --- glucosyltransferase --- angiotensin II blocker --- QSAR analysis --- oral diseases --- dental application --- Chinese herbal remedies --- stomatitis --- periodontitis --- Kampo --- traditional medicine --- Jixueteng --- Juzentaihoto --- technical terms --- gargle --- tongue diagnosis --- mastic --- pathogenic factors --- quantitative structure-activity relationship --- machine learning --- random forest --- natural products --- tumour-specificity --- Kampo medicine --- constituent plant extract --- stomatitis --- oral inflammation --- quantitative structure-activity relationship (QSAR) analysis --- metabolomics

Lipopolysaccharides (LPSs)

Author:
ISBN: 9783039282562 9783039282579 Year: Pages: 390 DOI: 10.3390/books978-3-03928-257-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

The cytoplasm of Gram-negative bacteria is bound by three layers: an inner membrane, a layer of peptidoglycan, and an outer membrane. The outer membrane is an asymmetric lipidic bilayer, with phospholipids on its inner surface and lipopolysaccharides (LPSs) on the outside, with the latter being the major component of the outer leaflet and covering nearly three-quarters of the total outer cell surface. All LPSs possess the same general chemical architecture independently of bacterial activity (pathogenic, symbiotic, commensal), ecological niche (human, animal, soil, plant, water), or growth conditions. Endotoxins are large amphiphilic molecules consisting of a hydrophilic polysaccharide component and a covalently bound hydrophobic and highly conserved lipid component, termed lipid A (the endotoxin subunit). The polysaccharide component can be divided into two subdomains: the internal and conserved core region as well as the more external and highly variable O-specific chain, also referred to as the O-antigen due to its immunogenic properties. LPSs are endotoxins, one of the most potent class of activators of the mammalian immune system; they can be released from cell surfaces of bacteria during multiplication, lysis, and death. LPS can act through its biological center (lipid A component) on various cell types, of which macrophages and monocytes are the most important.

Keywords

aspirin --- hepcidin --- P65 (nuclear factor-?B) --- IL-6/JAK2/STAT3 pathway --- lipopolysaccharide (LPS) --- nitric oxide (NO) --- iron regulatory protein 1 (IRP1) --- Megalobrama amblycephala --- lipopolysaccharide induced TNF? factor --- lipopolysaccharide stimulation --- innate immune --- Aeromonas --- genomics --- inner core oligosaccharide --- outer core oligosaccharide --- lipopolysaccharide --- lipopolysaccharide --- Erwinia amylovora --- NMR --- ESI FT-ICR --- structural determination --- Bordetellae --- Bordetella holmesii --- endotoxin --- lipid A --- structure --- mass spectrometry --- genomic --- Edwardsiella tarda --- core oligosaccharide --- MALDI-TOF MS --- ESI MSn --- NMR --- genomic --- LPS tolerance --- hypothalamic inflammation --- insulin resistance --- pJNK --- fibroblast --- keratocyte --- cornea --- lipopolysaccharide --- bacteria --- chemokine --- adhesion molecule --- collagen --- tear fluid --- serum resistance --- complement --- Salmonella --- lipopolysaccharide --- sialic acid --- reptile-associated salmonellosis --- sepsis --- time response --- inflammation --- oxidative stress --- endotoxaemia --- mouse --- rat --- lipopolysaccharide --- double-stranded RNA --- epithelial cell --- dendritic cell --- allergic respiratory disorder --- hygiene hypothesis --- rhinovirus --- respiratory syncytial virus --- toll-like receptor --- LPS --- lipopolysaccharide --- heptosyltransferase --- protein dynamics --- glycosyltransferase --- GT-B --- inhibitor design --- lipopolysaccharide --- Coxiella burnetii --- Q fever --- phagosome --- virenose --- Plesiomonas shigelloides --- O-antigen --- lipopolysaccharide --- O-acetylation --- d-galactan I --- HR-MAS --- NMR spectroscopy --- endotoxin --- lipopolysaccharide --- Low Endotoxin Recovery --- phase transitions --- polysorbate --- LPS aggregates --- Small Angle X-ray Scattering --- MAT --- LAL and LER --- anti-conjugate serum --- core oligosaccharide --- lipopolysaccharide --- NMR spectroscopy --- ESI MS --- Proteus penneri

Organs-on-chips

Authors: ---
ISBN: 9783039289172 / 9783039289189 Year: Pages: 262 DOI: 10.3390/books978-3-03928-918-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Recent advances in microsystems technology and cell culture techniques have led to the development of organ-on-chip microdevices that produce tissue-level functionality, not possible with conventional culture models, by recapitulating natural tissue architecture and microenvironmental cues within microfluidic devices.

Keywords

microfluidics --- vascularization --- organ-on-a-chip --- vascularized tumor model --- tissue engineering --- microfluidic device --- cell culture --- organ-on-chips --- lung epithelial cell --- surfactant protein --- angiogenesis --- shear stress --- biomechanics --- vessel branching --- beating force --- bio-mechanical property --- cardiac 3D tissue --- human induced pluripotent Stem cell-derived cardiomyocytes (hiPS-CM) --- tissue engineering --- vacuum chuck --- barrier permeability --- epithelial–endothelial interface --- paracellular/transcellular transport --- organ-on-chip --- MEMS --- silicon --- PDMS --- membranes --- cell --- strain --- stress --- lattice light-sheet microscopy --- 3D cell culture system --- functional neuron imaging --- 3D cell culture --- neuronal cells --- SH-SY5Y cells --- image-based screening --- nanogrooves --- neuronal cell networks --- neuronal guidance --- drug metabolism --- biomimetic oxidation --- microfluidics --- organ-on-a-chip --- liver-on-a-chip --- liver-on-a-chip --- drug hepatotoxicity --- drug metabolism --- organoid --- 3D cell culture --- spheroid array --- high-throughput screening --- drug efficacy --- organ-on-a-chip (OOC) --- microfluidic device --- mechanical cue --- shear flow --- compression --- stretch --- strain --- syringe pump --- integrated pump --- passive delivery --- organs-on-chips --- microfluidics --- drug absorption --- fluoroelastomer --- ischemia/reperfusion injury --- thrombolysis --- organ-on-a-chip --- endothelial cell activation --- microfluidics --- microfabrication --- organ-on-a-chip --- trans-epithelial electrical resistance --- multi-culture --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

english (2)

eng (1)


Year
From To Submit

2020 (2)

2019 (1)