Search results: Found 42

Listing 1 - 10 of 42 << page
of 5
>>
Sort by
Control of Energy Storage

Author:
ISBN: 9783038424949 9783038424956 Year: Pages: VIII, 309 DOI: 10.3390/books978-3-03842-495-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering
Added to DOAB on : 2018-01-03 13:53:24
License:

Loading...
Export citation

Choose an application

Abstract

Energy storage can provide numerous beneficial services and cost savings within the electricity grid, especially when facing future challenges like renewable and electric vehicle (EV) integration. Public bodies, private companies and individuals are deploying storage facilities for several purposes, including arbitrage, grid support, renewable generation, and demand-side management. Storage deployment can therefore yield benefits like reduced frequency fluctuation, better asset utilisation and more predictable power profiles. Such uses of energy storage can reduce the cost of energy, reduce the strain on the grid, reduce the environmental impact of energy use, and prepare the network for future challenges.This Special Issue of Energies explore the latest developments in the control of energy storage in support of the wider energy network, and focus on the control of storage rather than the storage technology itself.

Advanced Energy Storage Technologies and Their Applications (AESA)

Authors: --- ---
ISBN: 9783038425441 9783038425458 Year: Pages: 430 DOI: 10.3390/books978-3-03842-545-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2018-02-26 15:40:34
License:

Loading...
Export citation

Choose an application

Abstract

The depletion of fossil fuels, the increase of energy demands, and the concerns over climate change are the major driving forces for the development of renewable energy, such as solar energy and wind power. However, the intermittency of renewable energy has hindered the deployment of large-scale intermittent renewable energy, which, therefore, has necessitated the development of advanced large-scale energy storage technologies. The use of large-scale energy storage can effectively improve the efficiency of energy resource utilization, and increase the use of variable renewable resources, the energy access, and the end-use sector electrification (e.g., electrification of transport sector).This Special Issue will provide a platform for presenting the latest research results on the technology development of large-scale energy storage. We welcome research papers about theoretical, methodological and empirical studies, as well as review papers, that provide critical overview on the state of the art of technologies. This special issue is open to all types of energy, such as thermal energy, mechanical energy, electrical energy and chemical energy, using different types of systems, such as phase change materials, batteries, supercapacitors, fuel cells, compressed air, etc., which are applicable to various types of applications, such as heat and power generation, electrical/hybrid transportation, etc.

Hydrides: Fundamentals and Applications

Authors: --- ---
ISBN: 9783038422099 9783038422082 Year: Pages: XVI, 252 DOI: 10.3390/books978-3-03842-209-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2017-02-20 08:56:46
License:

Loading...
Export citation

Choose an application

Abstract

The reversible elimination of hydrogen from metal hydrides serves as the basis for unique methods of energy transformation. This technology has found widespread practical utilization in applications such as hydrogen compressors, storage, and sensors, as well as batteries. Moreover, it is plausible that metal hydride technology could be utilized to provide practically viable solutions to the challenges of energy storage. For nearly two decades, an extensive, worldwide research effort has been devoted to complex metal hydrides possessing high volumetric and/or gravimetric hydrogen densities with the goal of their practical utilization as onboard hydrogen storage materials. Additionally, a significant and growing number of efforts have been devoted to developing metal hydrides as advanced sensors and ionic conductors, and for electrochemical and stationary energy storage.

Uncertainties in energy markets and their consideration in energy storage evaluation

Author:
Book Series: Produktion und Energie / Karlsruher Institut für Technologie, Institut für Industriebetriebslehre und industrielle Produktion u. Deutsch-Französisches Institut für Umweltforschung ISSN: 21942404 ISBN: 9783731500469 Year: Volume: 4 Pages: XII, 236 p. DOI: 10.5445/KSP/1000035365 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Business and Management
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

This book successfully illustrates the modeling of electricity prices with the help of stochastic processes. The relatively new phenomenon of negative prices is also integrated into the models. The integration of feed-in from wind power plants in energy models is also very innovative. This approach helps to simulate electricity prices in order to take into account the ""merit-order effect of renewable energy"". Finally, the models are used for the techno-economic evaluation of energy storages.

Distributed Energy Storage Devices in Smart Grids

Authors: --- ---
ISBN: 9783039284344 / 9783039284351 Year: Pages: 148 DOI: 10.3390/books978-3-03928-435-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Energy storage systems have been recognized as viable solutions for implementing the smart grid paradigm, but have created challenges in terms of load levelling, integrating renewable and intermittent sources, voltage and frequency regulation, grid resiliency, improving power quality and reliability, reducing energy import during peak demand periods, and so on. In particular, distributed energy storage addresses a wide range of the above potential issues, and it is gaining attention from customers, utilities, and regulators. Distributed energy storage has considerable potential for reducing costs and improving the quality of electric services. However, installation costs and lifespan are the main drawbacks to the wide diffusion of this technology. In this context, a serious challenge is the adoption of new techniques and strategies for the optimal planning, control, and management of grids that include distributed energy storage devices. Regulatory guidance and proactive policies are urgently needed to ensure a smooth rollout of this technology. This book collects recent contributions of methodologies applied to the integration of distributed energy storage devices in smart power systems. Several areas of research (optimal siting and sizing of energy storage systems, adaption of energy storage systems to load leveling and harmonic compensation, integration for electric vehicles, and optimal control systems) are investigated in the contributions collected in this book.

Analysis and Design of Hybrid Energy Storage Systems

Author:
ISBN: 9783039286867 / 9783039286874 Year: Pages: 180 DOI: 10.3390/books978-3-03928-687-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The most important environmental challenge today's society is facing is to reduce the effects of CO2 emissions and global warming. Such an ambitious challenge can only be achieved through a holistic approach, capable of tackling the problem from a multidisciplinary point of view. One of the core technologies called to play a critical role in this approach is the use of energy storage systems. These systems enable, among other things, the balancing of the stochastic behavior of Renewable Sources and Distributed Generation in modern Energy Systems; the efficient supply of industrial and consumer loads; the development of efficient and clean transport; and the development of Nearly-Zero Energy Buildings (nZEB) and intelligent cities. Hybrid Energy Storage Systems (HESS) consist of two (or more) storage devices with complementary key characteristics, that are able to behave jointly with better performance than any of the technologies considered individually. Recent developments in storage device technologies, interface systems, control and monitoring techniques, or visualization and information technologies have driven the implementation of HESS in many industrial, commercial and domestic applications. This Special Issue focuses on the analysis, design and implementation of hybrid energy storage systems across a broad spectrum, encompassing different storage technologies (including electrochemical, capacitive, mechanical or mechanical storage devices), engineering branches (power electronics and control strategies; energy engineering; energy engineering; chemistry; modelling, simulation and emulation techniques; data analysis and algorithms; social and economic analysis; intelligent and Internet-of-Things (IoT) systems; and so on.), applications (energy systems, renewable energy generation, industrial applications, transportation, Uninterruptible Power Supplies (UPS) and critical load supply, etc.) and evaluation and performance (size and weight benefits, efficiency and power loss, economic analysis, environmental costs, etc.).

Emerging Technologies for Electric and Hybrid Vehicles

ISBN: 9783038971900 9783038971917 Pages: 372 DOI: 10.3390/books978-3-03897-191-7
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Transportation --- Electrical and Nuclear Engineering
Added to DOAB on : 2018-10-17 09:07:11
License:

Loading...
Export citation

Choose an application

Abstract

In a world where energy conservation, environmental protection and sustainable development are growing concerns, the development of electric vehicle (EV) and hybrid EV (HEV) technologies has taken on an accelerated pace. This collection entitled “Electric and Hybrid Vehicles” invites articles that address the state-of-the-art technologies and new developments for EVs and HEVs, including but not limited to energy sources, electric powertrains, hybrid powertrains, energy management systems, energy refueling systems, regenerative braking systems, system integration, system optimization and infrastructure. Articles which deal with the latest hot topics for EVs and HEVs are particularly encouraged such as advanced lithium-ion batteries, ultracapacitors, energy-efficient motor drives, bidirectional power converters, integrated-starter-generator systems, electric variable transmission systems, on-board renewable energy, inductive or wireless charging technology, and vehicle-to-grid technology. As the impact of the use of EVs and HEVs on our daily lives is utmost important, articles which deal with the relationships between the use of EVs or HEVs and the energy, environment and economy would be of particular interest.

Communications in Microgrids

Authors: --- --- ---
ISBN: 9783039284825 9783039284832 Year: Pages: 108 DOI: 10.3390/books978-3-03928-483-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This book presents some latest treatments of several specific, but fundamental problems about the data communication and control of smart microgrids. It provides readers some valuable insights into advanced control and communication of microgrids. With the help of mathematical tools, graduate students will benefit with a deep understanding of microgrids and explore some new research directions. In the meantime, this book gives various pictures and flowcharts to show how to address some challenges in microgrids. In addition, it provides solutions to serval specific technical problems, which might be helpful as references for the R&D staff about power systems in utilities and industry. Specifically, the book introduces the applications of advanced control methods such as sliding mode control and model predictive control for microgrids. After getting in-depth understanding of these advanced control methods, the readers are able to design their own improved controllers for not only microgrids, but also for other real-world power plants. Besides, the readers will also learn how to design distributed transaction mechanisms for power market based on the cutting edge blockchain technology.

Clean Energy and Fuel (Hydrogen) Storage

Authors: ---
ISBN: 9783039216307 9783039216314 Year: Pages: 278 DOI: 10.3390/books978-3-03921-631-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures.

Keywords

dye-sensitized solar cells --- carbon materials --- Ag nanoparticles --- freestanding TiO2 nanotube arrays --- gas turbine engine --- lean direct injection --- four-point --- low emissions combustion --- carbonate gas reservoirs --- water invasion --- recovery factor --- aquifer size --- production rate --- hydrogen storage --- complex hydrides --- nanocatalyst --- LiNH2 --- MgH2 --- ball milling --- Li-ion batteries --- nanocomposite materials --- cathode --- anode --- binder --- separator --- ionic liquid --- vertically oriented graphene --- electrical double layers --- charge density --- capacitance --- gas storage --- material science --- rock permeability --- synthetic rock salt testing --- Klinkenberg method --- hydrogen storage systems --- hydrogen absorption --- thermochemical energy storage --- metal hydride --- magnetism --- heat transfer enhancement --- Power to Liquid --- Fischer–Tropsch --- dynamic modeling --- lab-scale --- lithium-ion batteries --- simplified electrochemical model --- state of charge estimator --- extended kalman filter --- hot summer and cold winter area --- PCM roof --- comprehensive incremental benefit --- conjugate phase change heat transfer --- lattice Boltzmann method --- large-scale wind farm --- auxiliary services compensation --- battery energy storage system --- optimal capacity --- equivalent loss of cycle life --- hydrogen storage --- porous media --- bacterial sulfate reduction --- methanogenesis --- gas loss --- diffusion --- reactive transport modeling --- PHREEQC --- energy discharge --- bubbles burst --- bubbles transportation --- crystal growth rates --- undercooling --- salt cavern --- leaching tubing --- flutter instability --- flow-induced vibration --- internal and reverse external axial flows --- thermal energy storage (TES) --- slag --- regenerator --- concentrated solar power (CSP) --- quality function deployment (QFD) --- failure mode and effect analysis (FMEA) --- thermal energy storage --- electrochemical energy storage --- hydrogen energy storage --- salt cavern energy storage

Energy Storage and Management for Electric Vehicles

Authors: --- ---
ISBN: 9783039218622 9783039218639 Year: Pages: 238 DOI: 10.3390/books978-3-03921-863-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

This Special Edition of Energies on “Energy Storage and Management for Electric Vehicles” draws together a collection of research papers that critically evaluates key areas of innovation and novelty when designing and managing the high-voltage battery system within an electrified powertrain. The addressed topics include design optimisation, mathematical modelling, control engineering, thermal management, and component sizing.

Keywords

zinc–nickel single-flow battery --- equivalent circuit model --- self-discharge --- dynamic flow rate optimization --- genetic algorithm --- hybrid power system --- electric vehicle --- rule-based optimal strategy --- dynamic programming approach --- thermal modelling --- thermal behaviour --- lithium titanate oxide batteries --- optimal control --- supercapacitors --- batteries --- fuel cell --- hybrid vehicle --- battery degradation --- battery energy storage system --- charging scheme --- efficiency --- electric vehicle --- linear programming --- lithium ion battery --- operating expenses --- residential battery storage --- vehicle-to-building --- supercapacitor models --- parameter estimation --- ECE15 --- HPPC --- Simulink --- Simscape --- Matlab --- Identification --- regenerative energy --- timetable optimization --- energy storage system --- ?-constraint method --- improved artificial bee colony --- lithium-ion battery --- equivalent circuit model --- recursive least square --- adaptive forgetting factor --- parameter identification --- energy storage ageing and degradation --- life cycle assessment --- second-life energy storage applications --- Li-Sulfur batteries --- lithium-ion battery --- cell sorting --- multi-parameters sorting --- principal component analysis --- self-organizing maps clustering --- battery charging --- cycle-life --- state-of-health (SOH) --- battery cycle-life extension --- nonlinear battery model --- state of charge estimation --- lithium-ion battery --- Lipschitz nonlinear system --- Luenberger observer

Listing 1 - 10 of 42 << page
of 5
>>
Sort by
Narrow your search