Search results:
Found 7
Listing 1  7 of 7 
Sort by

Choose an application
Writing, Medium, Machine: Modern Technographies is a collection of thirteen essays by leading scholars which explores the mutual determination of forms of writing and forms of technology in modern literature. The essays unfold from a variety of historical and theoretical perspectives the proposition that literature is not less but more mechanical than other forms of writing: a transfigurative ideal machine. The collection breaks new ground archaeologically, unearthing representations in literature and film of a whole range of decisive technologies from the stereopticon through censusand slotmachines to the stock ticker, and from the Telex to the manipulation of genetic code and the screens which increasingly mediate our access to the world and to each other. It also contributes significantly to critical and cultural theory by investigating key concepts which articulate the relation between writing and technology: number, measure, encoding, encryption, the archive, the interface. Technography is not just a modern matter, a feature of texts that happen to arise in a world full of machinery and pay attention to that machinery in various ways. But the mediation of other machines has beyond doubt assisted literature to imagine and start to become the ideal machine it is always aspiring to be. Contributors: Ruth Abbott, John Attridge, Kasia Boddy, Mark Byron, Beci Carver, Steven Connor, Esther Leslie, Robbie Moore, Julian Murphet, James Purdon, Sean Pryor, Paul Sheehan, Kristen Treen.
literature  encoding  technology  number  the archive  the interface  technology in modern literature  encryption  measure  modern literature
Choose an application
This open access book constitutes the thoroughly refereed proceedings of the First International ISCIS Security Workshop 2018, EuroCYBERSEC 2018, held in London, UK, in February 2018. The 12 full papers presented together with an overview paper were carefully reviewed and selected from 31 submissions. Security of distributed interconnected systems, software systems, and the Internet of Things has become a crucial aspect of the performance of computer systems. The papers deal with these issues, with a specific focus on societally critical systems such as health informatics systems, the Internet of Things, energy systems, digital cities, digital economy, mobile networks, and the underlying physical and network infrastructures.
Choose an application
Image analysis is a fundamental task for extracting information from images acquired across a range of different devices. Since reliable quantitative results are requested, image analysis requires highly sophisticated numerical and analytical methods—particularly for applications in medicine, security, and remote sensing, where the results of the processing may consist of vitally important data. The contributions to this book provide a good overview of the most important demands and solutions concerning this research area. In particular, the reader will find image analysis applied for feature extraction, encryption and decryption of data, color segmentation, and in the support new technologies. In all the contributions, entropy plays a pivotal role.
image retrieval  multifeature fusion  entropy  relevance feedback  chaotic system  image encryption  permutationdiffusion  SHA256 hash value  dynamic index  entropy  keyframes  Shannon’s entropy  sign languages  video summarization  video skimming  image encryption  multipleimage encryption  twodimensional chaotic economic map  security analysis  image encryption  chaotic cryptography  cryptanalysis  chosenplaintext attack  image information entropy  blind image quality assessment (BIQA)  information entropy, natural scene statistics (NSS)  Weibull statistics  discrete cosine transform (DCT)  ultrasound  hepatic steatosis  Shannon entropy  fatty liver  metabolic syndrome  multiexposure image fusion  texture information entropy  adaptive selection  patch structure decomposition  image encryption  timedelay  random insertion  information entropy  chaotic map  uncertainty assessment  deep neural network  random forest  Shannon entropy  positron emission tomography  reconstruction  field of experts  additive manufacturing  3D prints  3D scanning  image entropy  depth maps  surface quality assessment  machine vision  image analysis  Arimoto entropy  freeform deformations  normalized divergence measure  gradient distributions  nonextensive entropy  nonrigid registration  pavement  macrotexture  3D digital imaging  entropy  decay trend  discrete entropy  infrared images  low contrast  multiscale tophat transform  image encryption  DNA encoding  chaotic cryptography  cryptanalysis  image privacy  computer aided diagnostics  colonoscopy  Rényi entropies  structural entropy  spatial filling factor  binary image  Cantor set  Hénon map  Minkowski island  primeindexed primes  Ramanujan primes  Kapur’s entropy  color image segmentation  whale optimization algorithm  differential evolution  hybrid algorithm  Otsu method  image encryption  dynamic filtering  DNA computing  3D Latin cube  permutation  diffusion  fuzzy entropy  electromagnetic field optimization  chaotic strategy  color image segmentation  multilevel thresholding  contrast enhancement  sigmoid  Tsallis statistics  qexponential  qsigmoid  qGaussian  ultrasound images  person reidentification  image analysis  hash layer  quantization loss  Hamming distance  crossentropy loss  image entropy  Shannon entropy  generalized entropies  image processing  image segmentation  medical imaging  remote sensing  security
Choose an application
In order to measure and quantify the complex behavior of realworld systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and nonuniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineeringoriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and antisynchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed.
multitime scale fractional stochastic differential equations  fractional Brownian motion  fractional stochastic partial differential equation  analytical solution  nonautonomous (autonomous) dynamical system  topological entropy  (asymptotical) focal entropy point  disturbation  mdimensional manifold  geometric nonlinearity  Bernoulli–Euler beam  colored noise  noise induced transitions  true chaos  Lyapunov exponents  wavelets  Lyapunov exponents  Wolf method  Rosenstein method  Kantz method  neural network method  method of synchronization  Benettin method  Fourier spectrum  Gauss wavelets  fractional calculus  Adomian decomposition  Mittag–Leffler function  descriptor fractional linear systems  regular pencils  Schur factorization  hyperchaotic system  selfsynchronous stream cipher  permutation entropy  image encryption  wavelet transform  product MValgebra  partition  Tsallis entropy  conditional Tsallis entropy  dynamical system  discrete chaos  discrete fractional calculus  hidden attractors  approximate entropy  stabilization  Information transfer  continuous flow  discrete mapping  Lorenz system  Chua’s system  deterministic chaos  random number generator  unbounded chaos  bounded chaos  phaselocked loop  Gaussian white noise  n/a
Choose an application
In recent years, entropy has been used as a measure of the degree of chaos in dynamical systems. Thus, it is important to study entropy in nonlinear systems. Moreover, there has been increasing interest in the last few years regarding the novel classification of nonlinear dynamical systems including two kinds of attractors: selfexcited attractors and hidden attractors. The localization of selfexcited attractors by applying a standard computational procedure is straightforward. In systems with hidden attractors, however, a specific computational procedure must be developed, since equilibrium points do not help in the localization of hidden attractors. Some examples of this kind of system are chaotic dynamical systems with no equilibrium points; with only stable equilibria, curves of equilibria, and surfaces of equilibria; and with nonhyperbolic equilibria. There is evidence that hidden attractors play a vital role in various fields ranging from phaselocked loops, oscillators, describing convective fluid motion, drilling systems, information theory, cryptography, and multilevel DC/DC converters. This Special Issue is a collection of the latest scientific trends on the advanced topics of dynamics, entropy, fractional order calculus, and applications in complex systems with selfexcited attractors and hidden attractors.
new chaotic system  multiple attractors  electronic circuit realization  SBox algorithm  chaotic systems  circuit design  parameter estimation  optimization methods  Gaussian mixture model  chaotic system  empirical mode decomposition  permutation entropy  image encryption  hidden attractors  fixed point  stability  nonlinear transport equation  stochastic (strong) entropy solution  uniqueness  existence  multiscale multivariate entropy  multistability  selfreproducing system  chaos  hidden attractor  selfexcited attractor  fractional order  spectral entropy  coexistence  multistability  chaotic flow  hidden attractor  multistable  entropy  core entropy  Thurston’s algorithm  Hubbard tree  external rays  chaos  Lyapunov exponents  multiplevalued  static memory  strange attractors  fractional discrete chaos  entropy  projective synchronization  full state hybrid projective synchronization  generalized synchronization  inverse full state hybrid projective synchronization  inverse generalized synchronization  multichannel supply chain  service game  chaos  entropy  BOPS  Hopf bifurcation  selfexcited attractors  multistability  sample entropy  PRNG  Nonequilibrium fourdimensional chaotic system  entropy measure  adaptive approximatorbased control  neural network  uncertain dynamics  synchronization  fractionalorder  complexvariable chaotic system  unknown complex parameters  chaotic map  fixed point  chaos  approximate entropy  implementation  hidden attractor  hyperchaotic system  multistability  entropy analysis  hidden attractor  complex systems  fractionalorder  entropy  chaotic maps  chaos  spatial dynamics  Bogdanov Map  chaos  laser  resonator
Choose an application
This text will provide the most recent knowledge and advances in the area of molecular computing and bioinformatics. Molecular computing and bioinformatics have a close relationship, paying attention to the same object but working towards different orientations. The articles will range from topics such as DNA computing and membrane computing to specific biomedical applications, including drug R&D and disease analysis.
prostate cancer  Mycoplasma hominis  endoplasmic reticulum  systems biology  protein targeting  biomedical text mining  big data  Tianhe2  parallel computing  load balancing  bacterial computing  bacteria and plasmid system  Turing universality  recursively enumerable function  miRNA biogenesis  structural patterns  DCL1  protein–protein interaction (PPI)  clustering  protein complex  penalized matrix decomposition  avian influenza virus  interspecies transmission  amino acid mutation  machine learning  Bayesian causal model  causal direction learning  K2  brain storm optimization  line graph  Cartesian product graph  join graph  atombond connectivity index  geometric arithmetic index  Pglycoprotein  efflux ratio  in silico  machine learning  hierarchical support vector regression  absorption  distribution  metabolism  excretion  toxicity  image encryption  chaotic map  DNA coding  Hamming distance  Stenotrophomonas maltophilia  iron acquisition systems  irondepleted  RAST server  NanoString Technologies  siderophores  gene fusion data  gene susceptibility prioritization  evaluating driver partner  gene networks  drugtarget interaction prediction  machine learning  drug discovery  microRNA  environmental factor  structure information  similarity network  bioinformatics  identification of Chinese herbal medicines  biochip technology  DNA barcoding technology  DNA strand displacement  cascade  8bit adder/subtractor  domain label  Alzheimer’s disease  gene coding protein  sequence information  support vector machine  classification  adverse drug reaction prediction  heterogeneous information network embedding  stacking denoising autoencoder  metapathbased proximity  Panax ginseng  oligopeptide transporter  flowering plant  phylogeny  transcription factor  multiple interaction networks  function prediction  multinetwork integration  lowdimensional representation  dihydrouridine  nucleotide physicochemical property  pseudo dinucleotide composition  RNA secondary structure  ensemble classifier  diabetes mellitus  hypoxiainducible factor1?  angiogenesis  bone formation  osteogenesis  protein transduction domain  membrane computing  edge detection  enzymatic numerical P system  resolution free  molecular computing  molecular learning  DNA computing  selforganizing systems  pattern classification  machine learning  laccase  Brassica napus  lignification  stress  molecular computing  bioinformatics  machine learning  protein  DNA  RNA  drug  bioinspired
Choose an application
Researches and investigations involving the theory and applications of integral transforms and operational calculus are remarkably widespread in many diverse areas of the mathematical, physical, chemical, engineering and statistical sciences.
highly oscillatory  convolution quadrature rule  volterra integral equation  Bessel kernel  convergence  higher order Schwarzian derivatives  Janowski starlike function  Janowski convex function  bound on derivatives  tangent numbers  tangent polynomials  Carlitztype qtangent numbers  Carlitztype qtangent polynomials  (p,q)analogue of tangent numbers and polynomials  (p,q)analogue of tangent zeta function  symmetric identities  zeros  Lommel functions  univalent functions  starlike functions  convex functions  inclusion relationships  analytic function  Hankel determinant  exponential function  upper bound  nonlinear boundary value problems  fractionalorder differential equations  RiemannStieltjes functional integral  LiouvilleCaputo fractional derivative  infinitepoint boundary conditions  advanced and deviated arguments  existence of at least one solution  Fredholm integral equation  Schauder fixed point theorem  Hölder condition  generalized Kuramoto–Sivashinsky equation  modified Kudryashov method  exact solutions  Maple graphs  analytic function  Hadamard product (convolution)  partial sum  Srivastava–Tomovski generalization of Mittag–Leffler function  subordination  differential equation  differential inclusion  Liouville–Caputotype fractional derivative  fractional integral  existence  fixed point  Bernoulli spiral  Grandi curves  Chebyshev polynomials  pseudoChebyshev polynomials  orthogonality property  symmetric  encryption  password  hash  cryptography  PBKDF  q–Bleimann–Butzer–Hahn operators  (p,q)integers  (p,q)Bernstein operators  (p,q)Bleimann–Butzer–Hahn operators  modulus of continuity  rate of approximation  Kfunctional  HurwitzLerch zeta function  generalized functions  analytic number theory  ?generalized HurwitzLerch zeta functions  derivative properties  series representation  basic hypergeometric functions  generating functions  qpolynomials  analytic functions  Mittag–Leffler functions  starlike functions  convex functions  Hardy space  vibrating string equation  initial conditions  spectral decomposition  regular solution  the uniqueness of the solution  the existence of a solution  analytic  ?convex function  starlike function  stronglystarlike function  subordination  q Sheffer–Appell polynomials  generating relations  determinant definition  recurrence relation  q Hermite–Bernoulli polynomials  q Hermite–Euler polynomials  q Hermite–Genocchi polynomials  Volterra integral equations  highly oscillatory Bessel kernel  Hermite interpolation  direct Hermite collocation method  piecewise Hermite collocation method  differential operator  qhypergeometric functions  meromorphic function  Mittag–Leffler function  Hadamard product  differential subordination  starlike functions  Bell numbers  radius estimate  (p, q)integers  Dunkl analogue  generating functions  generalization of exponential function  Szász operator  modulus of continuity  function spaces and their duals  distributions  tempered distributions  Schwartz testing function space  generalized functions  distribution space  wavelet transform of generalized functions  Fourier transform  analytic function  subordination  Dziok–Srivastava operator  nonlinear boundary value problem  nonlocal  multipoint  multistrip  existence  Ulam stability  functions of bounded boundary and bounded radius rotations  subordination  functions with positive real part  uniformly starlike and convex functions  analytic functions  univalent functions  starlike and qstarlike functions  qderivative (or qdifference) operator  sufficient conditions  distortion theorems  Janowski functions  analytic number theory  ?generalized Hurwitz–Lerch zeta functions  derivative properties  recurrence relations  integral representations  Mellin transform  natural transform  Adomian decomposition method  Caputo fractional derivative  generalized mittagleffler function  analytic functions  Hadamard product  starlike functions  qderivative (or qdifference) operator  Hankel determinant  qstarlike functions  fuzzy volterra integrodifferential equations  fuzzy general linear method  fuzzy differential equations  generalized Hukuhara differentiability  spectrum symmetry  DCT  MFCC  audio features  anuran calls  analytic functions  convex functions  starlike functions  strongly convex functions  strongly starlike functions  uniformly convex functions  Struve functions  truncatedexponential polynomials  monomiality principle  generating functions  Apostoltype polynomials and Apostoltype numbers  Bernoulli, Euler and Genocchi polynomials  Bernoulli, Euler, and Genocchi numbers  operational methods  summation formulas  symmetric identities  Euler numbers and polynomials  qEuler numbers and polynomials  HurwitzEuler eta function  multiple HurwitzEuler eta function  higher order qEuler numbers and polynomials  (p, q)Euler numbers and polynomials of higher order  symmetric identities  symmetry of the zero
Listing 1  7 of 7 
Sort by
