Search results:
Found 6
Listing 1  6 of 6 
Sort by

Choose an application
With this graduatelevel primer, the principles of the standard model of particle physics receive a particular skillful, personal and enduring exposition by one of the great contributors to the field.In 2013 the late Prof. Altarelli wrote: The discovery of the Higgs boson and the nonobservation of new particles or exotic phenomena have made a big step towards completing the experimental confirmation of the standard model of fundamental particle interactions. It is thus a good moment for me to collect, update and improve my graduate lecture notes on quantum chromodynamics and the theory of electroweak interactions, with main focus on collider physics. I hope that these lectures can provide an introduction to the subject for the interested reader, assumed to be already familiar with quantum field theory and some basic facts in elementary particle physics as taught in undergraduate courses.
elementary particles  quantum field theory  string theory
Choose an application
This open access textbook takes the reader stepbystep through the concepts of mechanics in a clear and detailed manner. Mechanics is considered to be the core of physics, where a deep understanding of the concepts is essential in understanding all branches of physics. Many proofs and examples are included to help the reader grasp the fundamentals fully, paving the way to deal with more advanced topics. After solving all of the examples, the reader will have gained a solid foundation in mechanics and the skills to apply the concepts in a variety of situations. The book is useful for undergraduate students majoring in physics and other science and engineering disciplines. It can also be used as a reference for more advanced levels.
Physics  Mechanics  Mechanical engineering  Elementary particles (Physics)  Quantum field theory
Choose an application
Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the bigdata analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum manybody physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for nonspecialists on quantum physics to understand tensor network algorithms and the related mathematics.
Physics  Physics  Quantum physics  Quantum optics  Statistical physics  Machine learning  Elementary particles (Physics)  Quantum field theory
Choose an application
This first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavyion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERNSpringer initiative, the “Particle Physics Reference Library” provides revised and updated contributions based on previously published material in the wellknown LandoltBoernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.
Elementary Particles, Quantum Field Theory  Nuclear Physics, Heavy Ions, Hadrons  Particle Acceleration and Detection, Beam Physics  Quantum Field Theories, String Theory  Measurement Science and Instrumentation  Nuclear Physics  Accelerator Physics  Theoretical, Mathematical and Computational Physics  Standard Model of particle physics  High energy physics handbook  Collider physics  Fundamental particles and forces  HEP reference work  experimental particle physics  LandoltBoernstein elementary particles  accelerator physics experiments  physics of particle detectors  Open Access  Quantum physics (quantum mechanics & quantum field theory)  Atomic & molecular physics  Particle & highenergy physics  Statistical physics  Scientific standards, measurement etc
Choose an application
This third open access volume of the handbook series deals with accelerator physics, design, technology and operations, as well as with beam optics, dynamics and diagnostics. A joint CERNSpringer initiative, the “Particle Physics Reference Library” provides revised and updated contributions based on previously published material in the wellknown LandoltBoernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Particle Acceleration and Detection, Beam Physics  Measurement Science and Instrumentation  Elementary Particles, Quantum Field Theory  Nuclear Physics, Heavy Ions, Hadrons  Accelerator Physics  Nuclear Physics  Physics of particle detectors  beam optics  accelerator diagnostics  Highenergy physics handbook  beam diagnostics  Accelerators and beams  Standard model of particle physics  Fundamental particles and forces  Accelerator design  Open Access  Particle & highenergy physics  Scientific standards, measurement etc  Quantum physics (quantum mechanics & quantum field theory)  Atomic & molecular physics
Choose an application
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and nonaccelerator based experiments. It also covers applications in medicine and life sciences. A joint CERNSpringer initiative, the “Particle Physics Reference Library” provides revised and updated contributions based on previously published material in the wellknown LandoltBoernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.
Particle Acceleration and Detection, Beam Physics  Measurement Science and Instrumentation  Elementary Particles, Quantum Field Theory  Nuclear Physics, Heavy Ions, Hadrons  Nuclear Energy  Accelerator Physics  Nuclear Physics  Highenergy physics handbook  Standard model of particle physics  Fundamental particles and forces  Physics of particle detectors  Accelerators and beams  Open Access  Particle & highenergy physics  Scientific standards, measurement etc  Quantum physics (quantum mechanics & quantum field theory)  Atomic & molecular physics  Nuclear power & engineering
Listing 1  6 of 6 
Sort by
