Search results: Found 32

Listing 1 - 10 of 32 << page
of 4
>>
Sort by
The Electrochemical Oxidation of H2 and CO at Patterned Ni Anodes of SOFCs

Author:
Book Series: Schriften des Instituts für Werkstoffe der Elektrotechnik, Karlsruher Institut für Technologie / Institut für Werkstoffe der Elektrotechnik ISSN: 18681603 ISBN: 9783866446861 Year: Volume: 20 Pages: XI, 144 p. DOI: 10.5445/KSP/1000023286 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

In this work, a deeper understanding of the electrochemical oxidation at SOFC anodes was gained by the experimental characterization of patterned Ni anodes in H2-H2O and CO-CO2 atmosphere. By high resolution data analysis, the Line Specific Resistance attributed to charge transfer and its dependencies on gas composition, temperature and polarization voltage were identified. Furthermore, the comparison of the performance of patterned and cermet anodes was enabled using a transmission line model.

Electrochemical Immunosensors and Aptasensors

Authors: ---
ISBN: 9783038424062 9783038424079 Year: Pages: VIII, 178 DOI: 10.3390/books978-3-03842-407-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2017-06-02 09:40:26
License:

Loading...
Export citation

Choose an application

Abstract

The possibility to integrate biorecognition elements into electrochemical detection systems has opened the way to a new class of powerful analytical devices named electrochemical (EC) biosensors. The first EC biosensors employed enzymes as recognition elements; however this limited their application to redox enzymes and natural or artificial redox substrates or inhibitors. Broadening this to include non-electroactive analytes was later possible thanks to the development of affinity sensors in which specific interactions between biomolecules are exploited for developing highly selective and sensitive biosensors. Presently, the combination of the exceptional molecular recognition capabilities of antibodies and aptamers with the sensitivity, low cost, practicality of use and handiness of electrochemical devices is leading to an impressive development of EC immunosensors and aptasensors that are potentially suitable to detect a wide range of analytes, following a path that is moving alongside the most recent advances in proteomics. Interestingly, with continued improvements and refinements in EC immunosensors based on the use of labels, together with intrinsically electroactive, or those with the ability to interact with electroactive molecules, a new generation of label-free sensors is being developed. This Special Issue takes stock of the state of the art and identifies prospects for EC immuno- and aptasensors, both labeled and label-free. Emphasis is placed on analytical applications for the rapid detection of disease markers and for toxicological and food analyses.

Hydrides: Fundamentals and Applications

Authors: --- ---
ISBN: 9783038422099 9783038422082 Year: Pages: XVI, 252 DOI: 10.3390/books978-3-03842-209-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2017-02-20 08:56:46
License:

Loading...
Export citation

Choose an application

Abstract

The reversible elimination of hydrogen from metal hydrides serves as the basis for unique methods of energy transformation. This technology has found widespread practical utilization in applications such as hydrogen compressors, storage, and sensors, as well as batteries. Moreover, it is plausible that metal hydride technology could be utilized to provide practically viable solutions to the challenges of energy storage. For nearly two decades, an extensive, worldwide research effort has been devoted to complex metal hydrides possessing high volumetric and/or gravimetric hydrogen densities with the goal of their practical utilization as onboard hydrogen storage materials. Additionally, a significant and growing number of efforts have been devoted to developing metal hydrides as advanced sensors and ionic conductors, and for electrochemical and stationary energy storage.

Electrochemically Active Microorganisms

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456512 Year: Pages: 218 DOI: 10.3389/978-2-88945-651-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Microbial electrochemical systems (MESs, also known as bioelectrochemical systems (BESs) are promising technologies for energy and products recovery coupled with wastewater treatment, and have attracted increasing attention. Many studies have been conducted to expand the application of MESs for contaminants degradation and bioremediation, and increase the efficiency of electricity production by optimizing architectural structure of MESs, developing new electrode materials, etc. However, one of the big challenges for researchers to overcome, before MESs can be used commercially, is to improve the performance of the biofilm on electrodes so that ‘electron transfer’ can be enhanced. This would lead to greater production of electricity, energy or other products. Electrochemically active microorganisms (EAMs) are a group of microorganisms which are able to release electrons from inside their cells to an electrode or accept electrons from an electron donor. The way in which EAMs do this is called ‘extracellular electron transfer’ (EET). So far, two EET mechanisms have been identified: direct electron transfer from microorganisms physically attached to an electrode, and indirect electron transfer from microorganisms that are not physically attached to an electrode. 1) Direct electron transfer between microorganisms and electrode can occur in two ways: a) when there is physical contact between outer membrane structures of the microbial cell and the surface of the electrode, b) when electrons are transferred between the microorganism and the electrode through tiny projections (called pili or nanowires) that extend from the outer membrane of the microorganism and attach themselves to the electrode. 2) Indirect transfer of electrons from the microorganisms to an electrode occurs via long-range electron shuttle compounds that may be naturally present (in wastewater, for example), or may be produced by the microorganisms themselves. The electrochemically active biofilm, which degrades contaminants and produces electricity in MESs, consists of diverse community of EAMs and other microorganisms. However, up to date only a few EAMs have been identified, and most studies on EET have focused on the two model species of Shewanella oneidensis and Geobacter sulfurreducens.

Characterization and Modeling of Electrochemical Energy Conversion Systems by Impedance Techniques

Author:
Book Series: Schriften des Instituts für Werkstoffe der Elektrotechnik, Karlsruher Institut für Technologie / Institut für Werkstoffe der Elektrotechnik ISSN: 18681603 ISBN: 9783866449039 Year: Volume: 23 Pages: IX, 166 p. DOI: 10.5445/KSP/1000029318 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58

Loading...
Export citation

Choose an application

Abstract

This thesis introduces (i) amendments to basic electrochemical measurement techniques in the time and frequency domain suitable for electrochemical energy conversion systems like fuel cells and batteries, which enable shorter measurement times and improved precision in both measurement and parameter identification, and (ii) a modeling approach that is able to simulate a technically relevant system just by information gained through static and impedance measurements of laboratory size cells.

Development of an Electrochemical Biosensor Platform and a Suitable Low-Impedance Surface Modification Strategy

Author:
Book Series: Schriften des Instituts für Mikrostrukturtechnik am Karlsruher Institut für Technologie / Hrsg.: Institut für Mikrostrukturtechnik ISSN: 18695183 ISBN: 9783731502722 Year: Volume: 27 Pages: XVIII, 144 p. DOI: 10.5445/KSP/1000043414 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

In this work, a flexible biosensor platform based on impedance spectroscopy and comprising of gold electrodes, polymeric flow cells and a suitable surface modification were developed. Initially, several surface modification techniques described in literature were implemented and optimized for impedimetric biosensors but their individual limitations rendered them unsuitable for this biosensor platform. A novel method based on photobleaching was developed and tested showing satisfactory results.

Magnetic Materials Based Biosensors

Author:
ISBN: 9783038972549 9783038972556 Year: Pages: 212 DOI: 10.3390/books978-3-03897-255-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Internal medicine
Added to DOAB on : 2018-10-19 10:59:48
License:

Loading...
Export citation

Choose an application

Abstract

ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms.[Selective and quantitative detection of different kinds of biocomponents plays an important role in biomedical applications, clinical diagnostics, environmental monitoring, toxicology, regenerative medicine and drug delivery. Therefore, multidisciplinary area of magnetic biosensing have been extensively developed in recent years, aiming to create compact analytical devices for non-expensive and low time consuming analysis provided at the point of care by non-skilled personnel. Biological samples exhibit very low magnetic background, and thus highly sensitive measurements of magnetic labels or magnetic nanoparticles enriched units can be performed without further processing. A magnetic biosensor is a compact analytical device in which magnetic transducer converts a magnetic field variation into a change of frequency, current, voltage, etc. Different types of magnetic effects are capable of creating magnetic biosensors with extra high sensitivity. This book describes interesting examples of magnetic materials based biosensors, including the synthesis of model materials for biosensor development, new engineering solutions and theoretical contributions on the magnetic biosensor sensitivity. Book contains 13 research works representing international multidisciplinary teams from Austria, China, Germany, Greece, Iran, Russia, Serbia, Spain, Taiwan and United States of America. It can be useful for PHD students and researches working in the field of magnetic nanomaterials and biomedical applications.

The Craft of Fractional Modelling in Science and Engineering

Author:
ISBN: 9783038429838 9783038429845 Year: Pages: X, 128 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Physics (General)
Added to DOAB on : 2018-06-22 14:41:30
License:

Loading...
Export citation

Choose an application

Abstract

This book is a result of the contributions of scientists involved in a Special Issue entitled “The Craft of Fractional Modelling in Science and Engineering” published by the journal Fractal and Fractional (MDPI). Most of the articles were published at the end of 2017 and the beginning 2018. In accordance with the initial aim of the Special Issue, the best published have now been consolidated into this book. The articles included span a broad area of applications of fractional calculus and demonstrate the feasibility of the non-integer differentiation and integration approach in modeling, directly related to pertinent problems in science and engineering.This a good beginning and it would be beneficial to continue with this collection under the same title and potentially provide a second volume of this book in the future.

Electrochemical Performance and Stability of Ba?.?Sr?.?Co?.?Fe?.?O??? for Oxygen Transport Membranes

Author:
Book Series: Schriften des Instituts für Angewandte Materialien - Werkstoffe der Elektrotechnik, Karlsruher Institut für Technologie / Institut für Angewandte Materialien - Werkstoffe der Elektrotechnik ISSN: 23658029 ISBN: 9783731504375 Year: Volume: 28 Pages: IV, 180 p. DOI: 10.5445/KSP/1000049670 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

Mixed ionic-electronic conducting (MIEC) ceramics as oxygen transport membranes (OTMs) can provide high oxygen permeation rates at comparably low energy demands. For this purpose, Ba?.?Sr?.?Co?.?Fe?.?O??? (BSCF) shows the best performance under ideal operating conditions. Thermal and chemical stability investigations, electrical behavior ?(T,pO?,t), and oxygen exchange parameter extraction by means of electrical conductivity relaxation resulted in a far better understanding of the BSCF system.

Charakterisierung und Modellentwicklung von Natur und Funktionalität der Kathoden/Elektrolyt-Grenzfläche von Hochtemperatur-Brennstoffzellen (SOFC)

Author:
Book Series: Schriften des Instituts für Angewandte Materialien - Werkstoffe der Elektrotechnik, Karlsruher Institut für Technologie / Institut für Angewandte Materialien - Werkstoffe der Elektrotechnik ISSN: 23658029 ISBN: 9783731508618 Year: Volume: 35 Pages: II, 246 p. DOI: 10.5445/KSP/1000087336 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

Solid oxide fuel cells (SOFC) achieve high efficiencies, the lower the internal electrochemical losses are. This work investigates insulating secondary phases at the cathode/electrolyte interface that are formed during fabrication. Full cells and model systems are electrochemically characterized, analyzed by electron microscopy and reconstructed by tomography. A FEM model reveals performance limiting factors. As a result, an optimized production routine is proposed.

Listing 1 - 10 of 32 << page
of 4
>>
Sort by
Narrow your search