Search results: Found 2

Listing 1 - 2 of 2
Sort by
Manipulative approaches to human brain dynamics

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194797 Year: Pages: 246 DOI: 10.3389/978-2-88919-479-7 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-03-10 08:14:33
License:

Loading...
Export citation

Choose an application

Abstract

In this EBook, we highlight how newly emerging techniques for non-invasive manipulation of the human brain, combined with simultaneous recordings of neural activity, contribute to the understanding of brain functions and neural dynamics in humans. A growing body of evidence indicates that the neural dynamics (e.g., oscillations, synchrony) are important in mediating information processing and networking for various functions in the human brain. Most of previous studies on human brain dynamics, however, show correlative relationships between brain functions and patterns of neural dynamics measured by imaging methods such as electroencephalography (EEG), magnetoencephalography (MEG), near-infrared spectroscopy (NIRS), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). In contrast, manipulative approaches by non-invasive brain stimulation (NIBS) have been developed and extensively used. These approaches include transcranial magnetic stimulation (TMS) and transcranial electric stimulation (tES) such as transcranial direct current stimulation (tDCS), alternating current stimulation (tACS), and random noise stimulation (tRNS), which can directly manipulate neural dynamics in the intact human brain. Although the neural-correlate approach is a strong tool, we think that manipulative approaches have far greater potential to show causal roles of neural dynamics in human brain functions. There have been technical challenges with using manipulative methods together with imaging methods. However, thanks to recent technical developments, it has become possible to use combined methods such as TMS–EEG coregistration. We can now directly measure and manipulate neural dynamics and analyze functional consequences to show causal roles of neural dynamics in various brain functions. Moreover, these combined methods can probe brain excitability, plasticity and cortical networking associated with information processing in the intact human brain. The contributors to this EBook have succeeded in showcasing cutting-edge studies and demonstrate the huge impact of their approaches on many areas in human neuroscience and clinical applications.

Biomaterials for Bone Tissue Engineering

Author:
ISBN: 9783039289653 / 9783039289660 Year: Pages: 244 DOI: 10.3390/books978-3-03928-966-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Bone tissue engineering aims to develop artificial bone substitutes that partially or totally restore the natural regeneration capability of bone tissue lost under circumstances of injury, significant defects, or diseases such as osteoporosis. In this context, biomaterials are the keystone of the methodology. Biomaterials for bone tissue engineering have evolved from biocompatible materials that mimic the physical and chemical environment of bone tissue to a new generation of materials that actively interacts with the physiological environment, accelerating bone tissue growth. Mathematical modelling and simulation are important tools in the overall methodology. This book presents an overview of the current investigations and recent contributions in the field of bone tissue engineering. It includes several successful examples of multidisciplinary collaboration in this transversal area of research. The book is intended for students, researchers, and professionals of a number of disciplines, such as engineering, mathematics, physics, chemistry, biomedicine, biology, and veterinary. The book is composed of an editorial section and 16 original research papers authored by leading researchers of this discipline from different laboratories across the world

Keywords

Pelvis --- Bone tumor --- 3D-printed implant --- Fixation design --- von Mises stress --- dental implants --- osseointegration --- resonance frequency analysis --- biomaterials --- titanium --- powder metallurgy --- loose sintering --- finite element method --- mechanical behaviour --- bone tissue regeneration --- computed tomography --- Xenografts --- stem cell --- cartilage --- finite element --- finite-element simulation --- electric stimulation --- bone regeneration --- computational modelling --- electrically active implants --- bioelectromagnetism --- critical size defect --- maxillofacial --- minipig --- oxygen delivery --- optimization --- mass transfer --- transport --- bone tissue engineering --- computational fluid dynamics --- Lattice Boltzmann method --- scaffold design --- culturing protocol --- Lagrangian scalar tracking --- cortical bone --- damage --- finite elements --- numerical results --- adipogenesis --- bone marrow --- MSCs --- prediction marker --- bone tissue --- elastoplasticity --- finite element method --- fracture risk --- osteoporosis --- trabeculae --- trabecular bone score --- vertebra --- biomechanics --- finite element modelling --- pelvis --- bone adaptation --- musculoskeletal modelling --- bone tissue engineering --- biomaterials --- computational mechanobiology --- numerical methods in bioengineering --- Ti6Al4V scaffolds --- triply periodic minimal surfaces --- selective laser melting --- additive manufacturing --- biomaterial applications --- finite element analysis --- spark plasma sintering --- wollastonite --- human dental pulp stem cells --- substrate-mediated electrical stimulation --- direct current electric field --- osteo-differentiation --- bone morphogenesis proteins --- cortical bone --- digital image correlation --- multiscale analysis --- micromechanics --- computational mechanics --- cone beam computed tomography --- automatic segmentation --- sliding window --- 3D virtual surgical plan --- Otsu’s method --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search