Search results: Found 15

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Anaerobic Digestion

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456796 Year: Pages: 152 DOI: 10.3389/978-2-88945-679-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology --- General and Civil Engineering --- Biotechnology --- Environmental Sciences
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Anaerobic digestion (AD) is a naturally-occurring biological process in soils, sediments, ruminants, and several other anoxic environments, that cycles carbon and other nutrients, and converts organic matter into a methane-rich gas. As a biotechnology, AD is now well-established for the treatment of the organic fraction of various waste materials, including wastewaters, but is also increasingly applied for an expanding range of organic feedstocks suitable for biological conversion to biogas. AD applications are classified in various ways, including on the basis of bioreactor design; and operating parameters, such as retention time, temperature, pH, total solids (TS) and volatile solids (VS) contents, and biodegradability of substrates. AD is an attractive bioenergy and waste / wastewater treatment technology. The advantages of AD for waste treatment include: production of a useable fuel (biogas/methane); possibility of high organic loading; reduced carbon footprint; and suitability for integration into a wide variety of process configurations and scales. Specifically, two important, and developing, applications exemplify the potential of AD technologies: (1) the integration of AD as the basis of the core technologies underpinning municipal wastewater, and sewage, treatment, to displace less sustainable, and more energy-intensive, aerobic biological treatment systems in urban water infrastructures; and (2) technical innovations for higher-rate conversions of high-solids wastestreams, and feedstocks, for the production of energy carriers (i.e. methane-biogas, but possibly also biohydrogen) and other industrially-relevant intermediates, such as organic acids.Internationally, the research effort to maximize AD biogas yield has increased ten-fold over the past decade. Depending on the feedstocks, bioreactor design and process parameters, fundamental and applied knowledge are still required to improve conversion rates and biogas yields. This Research Topic cover aspects related to AD processes, such as the effect of feedstock composition, as well as the effect of feedstock pre-treatment, bioreactor design and operating modes, on process efficiency; microbial community dynamics and systems biology; influence of macro- and micro-nutrient concentrations and availability; process control; upgrading and calibration of anaerobic digestion models (e.g. ADM1) considering the biochemical routes as well as the hydrodynamics in such ecosystems; and novel approaches to process monitoring, such as the development, and application, of novel, and rapid diagnostic assays, including those based on molecular microbiology. Detailed full-scale application studies were also particularly welcomed.

Anaerobic digestion of organic solid waste for energy production

Author:
Book Series: Karlsruher Berichte zur Ingenieurbiologie / Institut für Ingenieurbiologie und Biotechnologie des Abwassers, Universität Karlsruhe ISSN: 1728709 ISBN: 9783866444645 Year: Volume: 46 Pages: XIV, 131 p. DOI: 10.5445/KSP/1000015038 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

Anaerobic digestion of the organic fraction of municipal solid waste as such or together with food waste, press water or patatoes sludge was investigated to equilibrate methane production within a day or over the weekend, when no OFMSW was available. A stable co-digestion process could be achieved with COD degradation between 60 and 80 %. The max. organic loading rates were 28 kg COD/L,d. For stable methane production the OLR during Co-digestion should not excede 22,5 kg/L,d.

Vitamin E

Author:
ISBN: 9783038429050 9783038429067 Year: Pages: VIII, 150 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2018-05-22 09:52:09
License:

Loading...
Export citation

Choose an application

Abstract

Vitamin E is the major lipid-soluble antioxidant in the cell antioxidant system and is exclusively obtained from the diet. In 1922, vitamin E was discovered as a dietary factor essential for reproduction in rats. Meanwhile, vitamin E has revealed many more important molecular properties, such as the scavenging of reactive oxygen and nitrogen species with consequent prevention of the oxidative damage associated with many diseases. In addition, the modulation of signal transduction and gene expression in antioxidant and non-antioxidant manners was shown for vitamin E.This Special Issue highlights some of the recent advances in vitamin E research, showing on the one hand the status quo and providing, on the other hand, new insights into functions and physiological relevance. Thus, the current knowledge of tocochromanol biosynthesis in plants and future challenges regarding the understanding of its regulation are presented. Another paper describes the fate of vitamin E in the human gastrointestinal lumen during digestion. During the metabolism of vitamin E, the long-chain metabolites 13’-hydroxychromanol and 13’-carboxychromanol are formed by oxidative modification of the side-chain. Their occurrence in human serum indicates a physiological relevance. Another paper describes the membrane distribution of α-tocopherol in brain regions of adult rhesus monkeys, also looking for associations between membrane α-tocopherol and the content of polyunsaturated fatty acids.

Propionic Acid Degradation by Syntrophic Bacteria During Anaerobic Biowaste Digestion

Author:
Book Series: Karlsruher Berichte zur Ingenieurbiologie / Institut für Ingenieurbiologie und Biotechnologie des Abwassers, Karlsruher Institut für Technologie ISSN: 1728709 ISBN: 9783731501596 Year: Volume: 49 Pages: XVI, 152 p. DOI: 10.5445/KSP/1000037825 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

Propionic acid is an important intermediate produced during anaerobic degradation of biowaste and a precursor of a large amount of methane. Its accumulation during biomethanation is however a common problem resulting in stagnation phases in biogas production. During this study, the deeper insight into the process of propionic acid degradation was intended by using modern analytical chemistry, standard microbiological approach and molecular biology for describing and explaining the problem.

Advances in Biogas Desulfurization

Author:
ISBN: 9783039286607 / 9783039286614 Year: Pages: 106 DOI: 10.3390/books978-3-03928-661-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Biotechnology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Global concern about climate change caused by the exploitation of fossil fuels is encouraging the use of renewable energies. For instance, the European Union aims to be climate neutral by 2050. Biogas is an interesting renewable energy source due to its high calorific value. Today, biogas is mainly used for the production of electricity and heat by a combined heat and power engine. However, before its valorization, biogas needs to be desulfurized (H2S removal) to avoid corrosion and sulfur oxides emissions during its combustion. Biogas can be upgraded (CO2 removal) and used as vehicle fuel or injected into the natural gas grid. In the last 15 years, significant advances have occurred in the development of biological desulfurization processes. In this book with five chapters, the reader can find some of the latest advances in the biogas desulfurization and an overview of the state-of-the-art research. Three of them are research studies and two are reviews concerning the current state of biogas desulfurization technologies, economic analysis of alternatives, and the microbial ecology in biofiltration units. Biogas desulfurization is considered to be essential by many stakeholders (biogas producers, suppliers of biogas upgrading devices, gas traders, researchers, etc.) all around the world.

Biofuels and Biochemicals Production

Author:
ISBN: 9783038425540 9783038425557 Year: Pages: 196 DOI: 10.3390/books978-3-03842-555-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-01-10 12:39:10
License:

Loading...
Export citation

Choose an application

Abstract

The high demand and depletion of petroleum reserves and the associated impact on the environment, together with volatility in the energy market price over the past three decades, have led to tremendous efforts in bio-based research activities, especially in biofuels and biochemicals. Most people associate petroleum with gasoline, however, approximately 6000 petroleum-derived products are available on the market today. Ironically, these petroleum-derived products have not elicited a high level of interest among the populace and media due, in part, to little awareness of the origins of these important products. Given the finite nature of petroleum, it is critical to devote substantial amounts of energy and resources on the development of renewable chemicals, as is currently done for fuels. Theoretically, the bioproduction of gasoline-like fuels and the 6000 petroleum-derived products are within the realm of possibility since our aquatic and terrestrial ecosystems contain abundant and diverse microorganisms capable of catalyzing unlimited numbers of reactions. Moreover, the fields of synthetic biology and metabolic engineering have evolved to the point that a wide range of microorganisms can be enticed or manipulated to catalyze foreign, or improve indigenous, biosynthetic reactions. To increase the concentration of products of interest and to ensure consistent productivity and yield, compatible fermentation processes must be used. Greater agricultural and chemical production during the past three decades, due in part to population increase and industrialization, has generated increasing levels of waste, which must be treated prior to discharge into waterways or wastewater treatment plants. Thus, in addition to the need to understand the physiology and metabolism of microbial catalysts of biotechnological significance, development of cost-effective fermentation strategies to produce biofuels and chemicals of interests while generating minimal waste, or better yet, converting waste into value-added products, is crucial. In this Special Issue, we invite authors to submit original research and review articles that increase our understanding of fermentation technology vis-à-vis production of liquid biofuels and biochemicals, and fermentation strategies that alleviate product toxicity to the fermenting microorganism while enhancing productivity. Further, original research articles and reviews focused on anaerobic digestion, production of gaseous biofuels, fermentation optimization using modelling and simulations, metabolic engineering, or development of tailor-made fermentation processes are welcome.

Biofuel and Bioenergy Technology

Authors: --- ---
ISBN: 9783038975960 Year: Pages: 425 DOI: 10.3390/books978-3-03897-597-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-03-21 14:08:22
License:

Loading...
Export citation

Choose an application

Abstract

The subject of this book is ""Biofuel and Bioenergy Technology"". It aims to publish high-quality review and research papers, addressing recent advances in biofuel and bioenergy. State-of-the-art studies of advanced techniques of biorefinery for biofuel production are also included. Research involving experimental studies, recent developments, and novel and emerging technologies in this field are covered. This book contains twenty-seven technical papers which cover diversified biofuel and bioenergy technology-related research that have shown critical results and contributed significant findings to the fields of biomass processing, pyrolysis, bio-oil and its emulsification; transesterification and biodiesel, gasification and syngas, fermentation and biogas/methane, bioethanol and alcohol-based fuels, solid fuel and biochar, and microbial fuel cell and power generation development. The published contents relate to the most important techniques and analyses applied in the biofuel and bioenergy technology.

Keywords

air-steam gasification --- equilibrium model --- tar --- energy exchange --- exergy efficiency --- bio-electro-Fenton microbial fuel cells (Bio-E-Fenton MFCs) --- wastewater --- photo catalyst --- degradation --- calcination --- chemical oxygen demand (COD) --- MFC --- hydrodynamic boundary layer --- recirculation mode --- shear rate --- voltage --- charge transfer resistance --- biodiesel --- direct transesterification --- Rhodotorula glutinis --- single cell oil --- biogas --- tri-reforming process --- syngas --- methane and carbon dioxide conversion --- hydrogen/carbon monoxide ratio --- first-law/second-law efficiency --- biodiesel --- esterification --- liquid lipase --- superabsorbent polymer --- response surface methodology --- waste wood --- torrefaction --- energy yield --- mass yield --- CHO index --- gross calorific value --- Van Krevelen diagram --- anaerobic digestion --- biogas production --- wastewater treatment --- membrane bioreactors --- anaerobic digestion --- methane --- carbon dioxide --- small-scale biogas plants --- developing countries --- SOFC --- validation --- simulation --- exergy --- syngas --- Chlorella --- coal-fired flue-gas --- screening --- biodiesel property --- mixotrophic cultivation --- thermophilic anaerobic digestion --- corn stover --- prairie cord grass --- unbleached paper --- digester performance --- process stability --- synergistic effects --- microbial community --- Methanothermobacter --- biochemical methane potential --- redox potential reduction --- direct interspecies electron transfer --- electroactive biofilm --- Nejayote --- granular activated carbon --- Jerusalem artichoke --- lignocellulose --- acid pretreatment --- nitric acid --- alkali pretreatment --- enzymatic hydrolysis --- ethanol fermentation --- waste biomass --- Vietnam --- solid biofuel --- calorific value --- mechanical durability --- fatty acid methyl ester --- catalyst --- viscosity --- iodine value --- acidity index --- sewage sludge --- pyrolytic oil --- Taguchi method --- thermogravimetric analysis --- synergistic effect --- combined pretreatment --- ball mill --- ethanol organosolv --- herbaceous biomass --- lignin recovery --- Annona muricata --- biodiesel production --- seed oil --- soursop --- two-step process --- response surface methodology --- RSM --- second-generation biodiesel --- stone fruit --- optimisation --- biodiesel testing --- transesterification --- lignocellulosic biomass --- Miscanthus --- mechanical pretreatment --- organosolv pretreatment --- microbial biofuel --- metabolic engineering --- alkanes --- alcohols --- acetone --- electrochemical hydrogenation --- isopropanol --- membrane contamination --- polymer electrolyte membrane --- relative humidity --- diesel --- Carica papaya --- engine performance --- biodiesel --- characterisation --- porosity --- thermophoretic force --- biomass fuel --- non-premixed combustion --- counter-flow structure --- mathematical modeling --- emulsification --- liquefaction --- bio-oils --- co-surfactant --- surfactant --- diesel --- biogas --- Clostridiales --- hydrogen-producing bacteria --- bioreactors --- anaerobic fermentation --- anaerobic digestion --- microbial community composition

Current Strategies to Improve the Nutritional and Physical Quality of Baked Goods

Authors: ---
ISBN: 9783039283460 9783039283477 Year: Pages: 164 DOI: 10.3390/books978-3-03928-347-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Nutrition and Food Sciences --- Biology --- Science (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The lifestyle of humans is rapidly changing, and, correspondingly, their needs and the current and future megatrends of the food market. It is worth mentioning (1) the preference for natural, simple, and flexible diets that drive the further expansion of plant-focused formulations, (2) the focus on food sustainability (food waste reduction), and (3) the interest in healthy eating as the basis for good health. The hectic routine and rapid urbanization in developed and developing regions, respectively, have shifted consumer preferences toward bread and baked foods, which, interestingly, are often high in sugars and are categorized as having a high glycemic index. Therefore, it is of major importance to address the technological challenges of manufacturing baked goods with high physical and sensory quality that result in positive metabolic responses. This Special Issue seeks to provide fundamental understanding in this area and novel strategies to improve the nutritional properties of baked goods, including a decrease in starch bioaccessibility, sugar reduction, increase in fiber and/or protein content, and the improvement of phytochemical bioactivity. This Special Issue will also cover studies on the physical and sensory improvements of baked goods that may provide a mechanistic understanding to minimize the loss of quality after the incorporation of nutritional-improving ingredients, such as edible byproducts, proteins, or fibers. Last but not least, studies focused on the reduction of additives (clean label) or fat and on the use of sourdough to improve the sensory properties of baked goods will also be included.

Mass Spectrometric Proteomics

Author:
ISBN: 9783038978268 9783038978275 Year: Pages: 192 DOI: 10.3390/books978-3-03897-827-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

As suggested by the title of this Special Issue, liquid chromatography-mass spectrometry plays a pivotal role in the field of proteomics. Indeed, the research and review articles&nbsp; published in the Issue clearly evidence how the data produced by this sophisticated methodology may promote impressive advancements in this area. From among the topics discussed in the Issue, a few point to the development of&nbsp; new procedures for the&nbsp; optimization of the experimental conditions that should be applied&nbsp; for the identification of proteins present in complex mixtures.&nbsp; Other applications&nbsp; described in these articles show&nbsp; the huge potential of&nbsp; these strategies in the protein profiling of organs and&nbsp; range from&nbsp; to the study of post-translational tissue modifications to the investigation of the molecular mechanisms behind human disorders and the identification of potential biomarkers of these diseases.

The Impact of Beverages on Ingestive Behavior

Author:
ISBN: 9783038978121 9783038978138 Year: Pages: 166 DOI: 10.3390/books978-3-03897-813-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Nutrition and Food Sciences --- Biology --- Science (General)
Added to DOAB on : 2019-05-13 09:19:27
License:

Loading...
Export citation

Choose an application

Abstract

Nutrients is planning a Special Issue focusing on beverages and ingestive behavior. This Special Issue will focus on research related to all aspects of beverage consumption and post-ingestive consequences. There continues to be much controversy surrounding the influence of beverage choice on health outcomes. Research investigating the impact of beverage choice has on human health and post-ingestive consequences continue to grow. We know from the growing body of literature that beverage choice has a substantial impact on metabolism, food reinforcement and eating behaviors.

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Narrow your search