Search results: Found 22

Listing 1 - 10 of 22 << page
of 3
>>
Sort by
Dietary Zn and Human Health

Author:
ISBN: 9783038970194 9783038970200 Year: Pages: XII, 216 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-07-10 13:50:52
License:

Loading...
Export citation

Choose an application

Abstract

• Zinc (Zn) is an essential micronutrient that contributes to the proper functioning of over 300 enzymes and multiple biochemical and structural processes in the body. Zinc functions in the regulation of an extensive variety of genes, such as those involved in nucleic acid metabolism, cell signalling, apoptosis, and plays an integral role in immune system functioning. Even a mild Zn deficiency can profoundly affect growth and development, as well as impede immune differentiation and maturation. Zinc is widely distributed in foods, however, it was demonstrated that dietary constituents, such as phytate, polyphenols, and the intestinal microbiome, affect its dietary bioavailability and intestinal absorption. Regulation of zinc metabolism is achieved through a balance of absorption and excretion and involves adaptive mechanisms. The aim of this Special Issue is to explore dietary approaches that aim to improve Zn bioavailability and absorption, biomarkers of status, and the effect of Zn status on the intestinal microbiome.

Fe Deficiency, Dietary Bioavailability and Absorption

Author:
ISBN: 9783038972303 9783038972310 Year: Pages: 214 DOI: 10.3390/books978-3-03897-231-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Internal medicine
Added to DOAB on : 2018-10-12 11:51:12
License:

Loading...
Export citation

Choose an application

Abstract

ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms.[The World Health Organization (WHO) estimates that approximately one-third of worldwide infant deaths, and one half in developing countries, can be attributed to malnutrition. More specifically, iron (Fe) deficiency is the most common nutritional deficiency worldwide and a major cause of infant mortality. Fe deficiency is particularly widespread in low-income countries because of a general lack of consumption of animal products (which can promote non-heme Fe absorption and contain highly bioavailable heme Fe) coupled with a high consumption of a monotonous diet of cereal grains and legumes. Such diets are low in bioavailable Fe due to the presence of phytic acid and certain polyphenols that are inhibitors of Fe bioavailability. Diets with chronically poor Fe bioavailability which result in high prevalence of Fe deficiency and anemia, increase the risk of all-cause child mortalities and also may lead to many pathophysiological consequences including stunted growth, low birth weight, delayed mental development and motor functioning, among others. Thus, a crucial step in alleviating Fe deficiency anemia is through understanding how specific dietary practices and components contribute to the Fe status in a particular region where Fe deficiency is prevalent. The aim of this Special Issue is to report on the recent advances and research developments related to the improvements of dietary Fe bioavailability and absorption in an effort to alleviate dietary Fe deficiency.]

Frontiers of Sulfur Metabolism in Plant Growth, Development, and Stress Response

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199037 Year: Pages: 368 DOI: 10.3389/978-2-88919-903-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Growing plants have a constitutive demand for sulfur to synthesize proteins, sulfolipids and other essential sulfur containing molecules for growth and development. The uptake and subsequent distribution of sulfate is regulated in response to demand and environmental cues. The importance of sulfate for plant growth and vigor and hence crop yield and nutritional quality for human and animal diets has been clearly recognized. The acquisition of sulfur by plants, however, has become an increasingly important concern for the agriculture due to the decreasing S-emissions from industrial sources and the consequent limitation of inputs from atmospheric deposition. Molecular characterization involving transcriptomics, proteomics and metabolomics in Arabidopsis thaliana as well as in major crops revealed that sulfate uptake, distribution and assimilation are finely regulated depending on sulfur status and demand, and that these regulatory networks are integrated with cell cycle, photosynthesis, carbohydrate metabolism, hormonal signaling, uptake and assimilation of other nutrients, etc., to enable plant growth, development, and reproduction even under different biotic and abiotic stresses. This knowledge can be used to underpin approaches to enhance plant growth and nutritional quality of major food crops around the world. Although considerable progress has been made regarding the central role of sulfur metabolism in plant growth, development and stress response, several frontiers need to be explored to reveal the mechanisms of the cross-talk between sulfur metabolism and these processes. In this research topic the knowledge on plant sulfur metabolism is reviewed and updated. Focus is put not only on molecular mechanisms of control of sulfur metabolism but also on its integration with other vital metabolic events. The topic covers 4 major areas of sulfur research: sulfate uptake, assimilation and metabolism, regulation, and role in stress response. We hope that the topic will promote interaction between researchers with different expertise and thus contribute to a more integrative approach to study sulfur metabolism in plants.

The Importance of Iron in Pathophysiologic Conditions

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195244 Year: Pages: 479 DOI: 10.3389/978-2-88919-524-4 Language: English
Publisher: Frontiers Media SA
Subject: Therapeutics --- Science (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

The iron element (Fe) is strictly required for the survival of most forms of life, including bacteria, plants and humans. Fine-tuned regulatory mechanisms for Fe absorption, mobilization and recycling operate to maintain Fe homeostasis, the disruption of which leads to Fe overload or Fe depletion. Whereas the deleterious effect of Fe deficiency relies on reduced oxygen transport and diminished activity of Fe-dependent enzymes, the cytotoxicity induced by Fe overload is due to the ability of this metal to act as a pro-oxidant and catalyze the formation of highly reactive hydroxyl radicals via the Fenton chemistry. This results in unfettered oxidative stress generation that, by inducing protein, lipid and DNA oxidation, leads to Fe-mediated programmed cell death and organ dysfunction. Major and systemic Fe overloads occurring in hemochromatosis and Fe-loading anemias have been extensively studied. However, localized tissue Fe overload was recently associated to a variety of pathologies, such as infection, inflammation, cancer, cardiovascular and neurodegenerative disorders. In keeping with the existence of cross-regulatory interactions between Fe homeostasis and the pathophysiology of these diseases, further investigations on the mechanisms that provide cellular and systemic adaptation to tissue Fe overload are instrumental for future therapeutic approaches. Thus, we encourage our colleagues to submit original research papers, reviews, perspectives, methods and technology reports to contribute their findings to a current state of the art on a comprehensive overview of the importance of iron metabolism in pathophysiologic conditions.

Vitamin D and Human Health

Author:
ISBN: 9783038975861 9783038975878 Year: Pages: 306 DOI: 10.3390/books978-3-03897-587-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2019-02-21 10:04:11
License:

Loading...
Export citation

Choose an application

Abstract

Over the past decades, researchers have gathered data demonstrating that vitamin D and its metabolites possess activities far beyond the classic regulation of calcium–phosphate homeostasis. It is now well established that vitamin D is essential for the proper functioning of the musculoskeletal, cardiovascular, nervous, and immune systems. Furthermore, vitamin D and its analogs were shown to regulate proliferation and differentiation of keratinocyte, immune cells, and numerous cancer-derived cells, both in vivo and in vitro. On the other hand, population base studies have provided evidence that global vitamin D deficiency is correlated with the occurrence and aggravation of symptoms of skeletal, cardiovascular autoimmune, and skin disease; infections; metabolic and cognitive disorders; multiple types of cancers; as well as overall mortality. This Special Issue of International Journal of Molecular Sciences, entitled “Vitamin D and Human Health”, summarizes recent advances in our understanding of pleiotropic activity of vitamin D with a focus on its protective role against cancer, hypertension, viral infections, and neurological diseases, as well as its impact on the immune system and mitochondria. Furthermore, eight research papers provide new insight into vitamin D research and highlight new directions and targets in the prevention and treatment of human diseases.

Dietary Trace Minerals

Author:
ISBN: 9783039283248 9783039283255 Year: Pages: 208 DOI: 10.3390/books978-3-03928-325-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Dietary trace minerals are pivotal and hold a key role in numerous metabolic processes. Trace mineral deficiencies (except for iodine, iron, and zinc) do not often develop spontaneously in adults on ordinary diets; infants are more vulnerable because their growth is rapid and their intake varies. Trace mineral imbalances can result from hereditary disorders (e.g., hemochromatosis, Wilson disease), kidney dialysis, parenteral nutrition, restrictive diets prescribed for people with inborn errors of metabolism, or various popular diet plans. The Special Issue “Dietary Trace Minerals” comprised 13 peer-reviewed papers on the most recent evidence regarding the dietary intake of trace minerals, as well as their effect on the prevention and treatment of non-communicable diseases. Original contributions and literature reviews further demonstrated the crucial and central part that dietary trace minerals play in human health and development. This editorial provides a brief and concise overview of the content of the Dietary Trace Minerals Special Issue.

Vitamin D and Human Health

ISBN: 9783038420569 9783038420576 Year: Pages: 476 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2015-10-22 08:50:54
License:

Loading...
Export citation

Choose an application

Abstract

Vitamin D research has expanded greatly over the last 10 years, with a more than two-fold increase in annual publications listed in Pubmed with the key word ‘vitamin D’ from 1675 in 2005 to 3953 in 2014. Part of this increase is due to research showing that vitamin D deficiency is associated with a wide range of diseases and health outcomes. Until the 1980s, the primary focus of vitamin D research (in combination with calcium supplementation) was on bone diseases. Since then, observational studies have linked vitamin D deficiency with increased risk of many diseases: both acute and chronic. This book contains publications on several of these disease groups linked to vitamin D deficiency.

Nutrition in Inflammatory Bowel Disease (IBD)

Author:
ISBN: 9783039214396 9783039214402 Year: Pages: 370 DOI: 10.3390/books978-3-03921-440-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The purpose of this Special Issue “Nutrition in Inflammatory Bowel Disease (IBD)” is to increase knowledge regarding the role of dietary composition and effects in IBD, describing the prevalence of malnutrition in IBD and the effect on clinical outcomes, discussing methods of nutrition risk screening and assessment in IBD, and reviewing mechanisms through which diet and dietary components may affect disease severity. The articles focus on the following areas: Dietary Composition/Therapy Interventions in Ulcerative Colitis and effects on outcomes; Dietary Composition/Therapy Interventions in Crohn’s Disease and effects on outcomes; Nutrition Risk Screening and Assessment in IBD; Mechanisms of Diet in the pathogenesis of IBD.

Keywords

body composition --- obesity --- visceral adipose tissue --- fat --- osteoporosis --- osteopenia --- sarcopenia --- inflammatory bowel disease --- Crohn’s disease --- dietary intake --- malnutrition --- Mediterranean diet --- exclusive enteral nutrition --- children --- IBD --- remission --- mucosal cytokines --- dietary protein level --- colitis --- epithelial repair --- mucosa-adherent microbiota --- intestinal inflammation --- inflammatory bowel disease --- epithelial adherens junctions --- bioactive peptides --- synbiotic --- prebiotic --- probiotic --- IBD --- Bacillus spores --- dietary fibre --- sugar cane fibre --- ulcerative colitis --- colon --- high-sulfur foods --- inflammation --- metagenomics --- microbiota --- sulfur reducing --- inflammatory bowel disease --- Crohn --- ulcerative colitis --- diet --- nutrition --- exclusive enteral nutrition --- intestinal epithelial cells --- inflammation --- probiotics --- Lactobacillus acidophilus --- Bifidobacterium animalis subsp. lactis --- vitamin D --- IBD --- Crohn’s disease --- ulcerative colitis --- supplementation --- deficiency --- Inflammatory Bowel Disease (IBD) --- Mediterranean Diet --- Western-style Diet (WSD) --- Nutritional Approach --- vitamin D --- Crohn’s disease --- ulcerative colitis --- faecal calprotectin --- C-reactive protein --- diet --- inflammatory bowel disease --- microbiota --- intestinal barrier --- nutrients --- immunity --- colitis --- food additive --- diet --- emulsifiers --- high salt diet --- inflammatory bowel diseases --- inflammatory bowel disease --- dietary modification --- exclusive enteral nutrition --- lifestyle modification --- Mediterranean diet --- colorectal cancer --- inflammatory bowel disease --- colorectal cancer --- dysplasia --- berries --- chemoprevention --- Inflammatory Bowel Disease --- micronutrients --- vitamin --- mineral --- deficiency --- inflammatory bowel disease --- dietary habits --- food components --- gut microbiota --- immune homeostasis --- epigenetic changes --- inflammatory bowel disease --- malnutrition --- Mediterranean diet --- older age --- diet --- inflammatory bowel disease --- ulcerative colitis --- inflammatory bowel disease --- Westernisation --- genotypes --- nutrient deficiency --- food intolerance --- FODMAPs --- gluten --- fructose --- lactose --- brassica --- mushrooms --- n/a

Iron as Therapeutic Targets in Human Diseases Volume 1

Authors: --- ---
ISBN: 9783039280827 9783039280834 Year: Pages: 472 DOI: 10.3390/books978-3-03928-083-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions.

Keywords

cinnamic acid derivatives --- soybean seed ferritin --- iron release --- binding ability --- Fe2+-chelating activity --- reducibility --- adverse event profile --- anaemia --- bioengineering --- labile iron --- intravenous iron --- iron-carbohydrate complex --- iron processing --- iron metabolism --- infection --- innate immunity --- hepcidin --- ferritin --- anemia of inflammation --- pharmaceutical targets --- iron deficiency anemia --- nutrient iron --- oral iron therapy --- FeSO4 --- NaFeEDTA --- non-transferrin-bound iron (NTBI) --- developing countries --- Indonesia --- neurodegeneration --- mitochondria --- therapy --- heme --- haem --- Iron-sulfur --- Friedreich Ataxia --- Oxidative stress --- Iron chelators --- iron deficiency --- anemia --- cancer --- hepcidin --- patient blood management --- malaria --- iron deficiency --- hepcidin --- TNF --- children --- Africa --- Anemia --- iron deficiency --- oral iron salts --- intravenous iron --- Sucrosomial® iron --- M cells --- bioavailability --- tolerability --- efficacy --- iron --- gut microbiota --- iron supplementation --- iron transporters --- mucosal immunity --- SCFA --- intestinal inflammation --- inflammatory bowel disease (IBD) --- colorectal cancer --- oxidative stress --- anaemia --- cardiovascular disease --- chronic kidney disease --- IV iron therapy --- bone homeostasis --- iron overload --- iron deficiency --- osteoclast --- osteoblast --- osteoporosis --- neurodegeneration with brain iron accumulation --- iron chelation therapy --- multifunctional iron chelators --- fluorescent iron chelator --- 3-hydroxy-4-pyridinone --- fluorophore --- rhodamine --- membrane interactions --- bacteria --- antibacterial activity --- histidine --- iron --- anemia --- oxidative stress --- kidney --- chelation --- iron --- retina --- age-related macular degeneration (AMD) --- iron --- lipid --- obesity --- cancer --- neurodegeneration --- iron chelation --- phlebotomy --- NCOA4 --- ferritinophagy --- iron homeostasis --- erythropoiesis --- ferroptosis --- cancer --- Tfr2 --- iron metabolism --- hepcidin --- erythropoiesis --- SNC --- ferritin --- iron mobilization --- chaotropes --- flavin nucleotide --- electron transfer --- kinetics --- ferritin --- iron --- iron delivery --- nanotechnology --- nanocage --- drug delivery --- inflammation --- serum biomarker --- iron metabolism --- hepcidin --- ferroportin --- hemochromatosis --- anemia --- hepcidin --- iron deficiency anemia --- iron dextran --- neonatal period --- pig --- supplementation --- Alzheimer’s disease --- neuroinflammation --- neurodegeneration --- cytokines --- neuroimmune responses --- iron --- genetic hemochromatosis --- non transferrin bound iron --- hepcidin --- ferroportin --- venesections --- Anemia of chronic disease --- anemia of inflammation --- hepcidin --- anti-hepcidin therapy --- iron supplementation --- macrophage --- central nurse macrophage --- red pulp macrophage --- Kupffer cell --- iron metabolism --- erythropoiesis --- erythroblastic islands --- erythrophagocytosis --- inflammation --- iron homeostasis --- lung diseases --- oxygen sensing --- hypoxia --- ferritin --- hereditary hyperferritinemia --- hereditary hypoferritinemia --- iron metabolism --- cataracts syndrome --- neurodegenerative disease --- n/a --- iron --- neurodegeneration --- NBIA --- hepcidin --- iron --- lung --- acute lung injury --- COPD --- lung infection --- cystic fibrosis --- iron --- anaemia --- infection --- malaria --- immunity --- brain development --- growth --- microbiome --- hepcidin --- ferritin --- iron supplementation --- infants --- children --- low and middle income countries --- liver --- iron --- hepcidin --- Mek/Erk --- Hfe --- Bmp/Smad --- iron --- mycobacteria --- immunity --- Alzheimer’s disease --- iron homeostasis --- ferroptosis --- senescence --- chelators --- macrophages --- iron --- metabolism --- inflammation --- iron --- ferritin --- acute kidney injury --- chronic kidney disease --- vascular calcification --- iron --- hepcidin --- ferroportin --- Interleukin-6 --- infection --- rheumatoid arthritis --- iron homeostasis --- iron absorption --- non-haem iron --- flavonoids --- developmental --- iron deficiency anemia --- neonatal --- transferrin receptor --- treatment --- hemochromatosis --- HFE --- natural history --- T lymphocytes --- MHC --- CD8+ T cells --- prevention --- iron homeostasis --- hepcidin --- protein binding --- peritoneal dialysis --- iron --- hepcidin --- iron regulatory proteins --- cardiomyocyte --- chronic heart failure --- pulmonary arterial smooth muscle cells --- pulmonary arterial hypertension --- iron --- brain --- neurophysiology --- cognition --- social behavior --- didox --- iron chelators --- antitumor compound --- iron metabolism --- RRM2 --- SLC40A1 --- ferroportin --- iron overload --- non-HFE --- ferritin --- hemochromatosis --- iron --- chelation --- neurodegenerative diseases --- pituitary --- brain --- hemopexin --- heme homeostasis --- iron homeostasis --- hemolysis --- haptoglobin --- ferroptosis --- inflammation --- biomarker --- heme oxygenase --- liver --- microbiome --- trauma --- hemorrhage --- iron metabolism --- hepcidin --- iron homeostasis --- ferroportin --- n/a

Iron as Therapeutic Targets in Human Diseases Volume 2

Authors: --- ---
ISBN: 9783039281145 9783039281152 Year: Pages: 440 DOI: 10.3390/books978-3-03928-115-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions.

Keywords

cinnamic acid derivatives --- soybean seed ferritin --- iron release --- binding ability --- Fe2+-chelating activity --- reducibility --- adverse event profile --- anaemia --- bioengineering --- labile iron --- intravenous iron --- iron-carbohydrate complex --- iron processing --- iron metabolism --- infection --- innate immunity --- hepcidin --- ferritin --- anemia of inflammation --- pharmaceutical targets --- iron deficiency anemia --- nutrient iron --- oral iron therapy --- FeSO4 --- NaFeEDTA --- non-transferrin-bound iron (NTBI) --- developing countries --- Indonesia --- neurodegeneration --- mitochondria --- therapy --- heme --- haem --- Iron-sulfur --- Friedreich Ataxia --- Oxidative stress --- Iron chelators --- iron deficiency --- anemia --- cancer --- hepcidin --- patient blood management --- malaria --- iron deficiency --- hepcidin --- TNF --- children --- Africa --- Anemia --- iron deficiency --- oral iron salts --- intravenous iron --- Sucrosomial® iron --- M cells --- bioavailability --- tolerability --- efficacy --- iron --- gut microbiota --- iron supplementation --- iron transporters --- mucosal immunity --- SCFA --- intestinal inflammation --- inflammatory bowel disease (IBD) --- colorectal cancer --- oxidative stress --- anaemia --- cardiovascular disease --- chronic kidney disease --- IV iron therapy --- bone homeostasis --- iron overload --- iron deficiency --- osteoclast --- osteoblast --- osteoporosis --- neurodegeneration with brain iron accumulation --- iron chelation therapy --- multifunctional iron chelators --- fluorescent iron chelator --- 3-hydroxy-4-pyridinone --- fluorophore --- rhodamine --- membrane interactions --- bacteria --- antibacterial activity --- histidine --- iron --- anemia --- oxidative stress --- kidney --- chelation --- iron --- retina --- age-related macular degeneration (AMD) --- iron --- lipid --- obesity --- cancer --- neurodegeneration --- iron chelation --- phlebotomy --- NCOA4 --- ferritinophagy --- iron homeostasis --- erythropoiesis --- ferroptosis --- cancer --- Tfr2 --- iron metabolism --- hepcidin --- erythropoiesis --- SNC --- ferritin --- iron mobilization --- chaotropes --- flavin nucleotide --- electron transfer --- kinetics --- ferritin --- iron --- iron delivery --- nanotechnology --- nanocage --- drug delivery --- inflammation --- serum biomarker --- iron metabolism --- hepcidin --- ferroportin --- hemochromatosis --- anemia --- hepcidin --- iron deficiency anemia --- iron dextran --- neonatal period --- pig --- supplementation --- Alzheimer’s disease --- neuroinflammation --- neurodegeneration --- cytokines --- neuroimmune responses --- iron --- genetic hemochromatosis --- non transferrin bound iron --- hepcidin --- ferroportin --- venesections --- Anemia of chronic disease --- anemia of inflammation --- hepcidin --- anti-hepcidin therapy --- iron supplementation --- macrophage --- central nurse macrophage --- red pulp macrophage --- Kupffer cell --- iron metabolism --- erythropoiesis --- erythroblastic islands --- erythrophagocytosis --- inflammation --- iron homeostasis --- lung diseases --- oxygen sensing --- hypoxia --- ferritin --- hereditary hyperferritinemia --- hereditary hypoferritinemia --- iron metabolism --- cataracts syndrome --- neurodegenerative disease --- n/a --- iron --- neurodegeneration --- NBIA --- hepcidin --- iron --- lung --- acute lung injury --- COPD --- lung infection --- cystic fibrosis --- iron --- anaemia --- infection --- malaria --- immunity --- brain development --- growth --- microbiome --- hepcidin --- ferritin --- iron supplementation --- infants --- children --- low and middle income countries --- liver --- iron --- hepcidin --- Mek/Erk --- Hfe --- Bmp/Smad --- iron --- mycobacteria --- immunity --- Alzheimer’s disease --- iron homeostasis --- ferroptosis --- senescence --- chelators --- macrophages --- iron --- metabolism --- inflammation --- iron --- ferritin --- acute kidney injury --- chronic kidney disease --- vascular calcification --- iron --- hepcidin --- ferroportin --- Interleukin-6 --- infection --- rheumatoid arthritis --- iron homeostasis --- iron absorption --- non-haem iron --- flavonoids --- developmental --- iron deficiency anemia --- neonatal --- transferrin receptor --- treatment --- hemochromatosis --- HFE --- natural history --- T lymphocytes --- MHC --- CD8+ T cells --- prevention --- iron homeostasis --- hepcidin --- protein binding --- peritoneal dialysis --- iron --- hepcidin --- iron regulatory proteins --- cardiomyocyte --- chronic heart failure --- pulmonary arterial smooth muscle cells --- pulmonary arterial hypertension --- iron --- brain --- neurophysiology --- cognition --- social behavior --- didox --- iron chelators --- antitumor compound --- iron metabolism --- RRM2 --- SLC40A1 --- ferroportin --- iron overload --- non-HFE --- ferritin --- hemochromatosis --- iron --- chelation --- neurodegenerative diseases --- pituitary --- brain --- hemopexin --- heme homeostasis --- iron homeostasis --- hemolysis --- haptoglobin --- ferroptosis --- inflammation --- biomarker --- heme oxygenase --- liver --- microbiome --- trauma --- hemorrhage --- iron metabolism --- hepcidin --- iron homeostasis --- ferroportin --- n/a

Listing 1 - 10 of 22 << page
of 3
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (20)

Frontiers Media SA (2)


License

CC by-nc-nd (19)

CC by (3)


Language

english (22)


Year
From To Submit

2020 (5)

2019 (12)

2018 (2)

2016 (1)

2015 (2)