Search results: Found 37

Listing 1 - 10 of 37 << page
of 4
>>
Sort by
Applied Artificial Neural Networks

Author:
ISBN: 9783038422709 9783038422716 Year: Pages: XIV, 244 DOI: 10.3390/books978-3-03842-271-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2016-11-11 19:33:54
License:

Loading...
Export citation

Choose an application

Abstract

Since their re-popularisation in the mid-1980s, artificial neural networks have seen an explosion of research across a diverse spectrum of areas. While an immense amount of research has been undertaken in artificial neural networks themselves—in terms of training, topologies, types, etc.—a similar amount of work has examined their application to a whole host of real-world problems. Such problems are usually difficult to define and hard to solve using conventional techniques. Examples include computer vision, speech recognition, financial applications, medicine, meteorology, robotics, hydrology, etc.This Special Issue focuses on the second of these two research themes, that of the application of neural networks to a diverse range of fields and problems. It collates contributions concerning neural network applications in areas such as engineering, hydrology and medicine.

Intelligentes Gesamtmaschinenmanagement für elektrische Antriebssysteme

Author:
Book Series: Karlsruher Schriftenreihe Fahrzeugsystemtechnik / Institut für Fahrzeugsystemtechnik ISSN: 18696058 ISBN: 9783731507741 Year: Volume: 60 Pages: XVI, 150 p. DOI: 10.5445/KSP/1000081063 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-28 18:37:01
License:

Loading...
Export citation

Choose an application

Abstract

Innovative electric propulsion systems are increasingly applied to off-highway machines, to gain efficiency optimization of the work process. This book focuses on the aspect of work process optimization and achieves forward-looking results through the use of intelligent, adaptive overall machine management.

Artificial Neural Networks as Models of Neural Information Processing

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454013 Year: Pages: 220 DOI: 10.3389/978-2-88945-401-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Modern neural networks gave rise to major breakthroughs in several research areas. In neuroscience, we are witnessing a reappraisal of neural network theory and its relevance for understanding information processing in biological systems. The research presented in this book provides various perspectives on the use of artificial neural networks as models of neural information processing. We consider the biological plausibility of neural networks, performance improvements, spiking neural networks and the use of neural networks for understanding brain function.

Machine Learning With Radiation Oncology Big Data

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889457304 Year: Pages: 146 DOI: 10.3389/978-2-88945-730-4 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Oncology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Radiation oncology is uniquely positioned to harness the power of big data as vast amounts of data are generated at an unprecedented pace for individual patients in imaging studies and radiation treatments worldwide. The big data encountered in the radiotherapy clinic may include patient demographics stored in the electronic medical record (EMR) systems, plan settings and dose volumetric information of the tumors and normal tissues generated by treatment planning systems (TPS), anatomical and functional information from diagnostic and therapeutic imaging modalities (e.g., CT, PET, MRI and kVCBCT) stored in picture archiving and communication systems (PACS), as well as the genomics, proteomics and metabolomics information derived from blood and tissue specimens. Yet, the great potential of big data in radiation oncology has not been fully exploited for the benefits of cancer patients due to a variety of technical hurdles and hardware limitations.With recent development in computer technology, there have been increasing and promising applications of machine learning algorithms involving the big data in radiation oncology. This research topic is intended to present novel technological breakthroughs and state-of-the-art developments in machine learning and data mining in radiation oncology in recent years.

Collaborative Technologies and Data Science in Artificial Intelligence Applications

Authors: --- --- ---
ISBN: 9783832551414 Year: Pages: 200 DOI: 10.30819/5141
Publisher: Logos Verlag Berlin GmbH
Subject: Information theory
Added to DOAB on : 2020-09-22 18:33:35
License:

Loading...
Export citation

Choose an application

Abstract

Sentiment Analysis for Social Media

Authors: ---
ISBN: 9783039285723 / 9783039285730 Year: Pages: 152 DOI: 10.3390/books978-3-03928-573-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:56
License:

Loading...
Export citation

Choose an application

Abstract

Sentiment analysis is a branch of natural language processing concerned with the study of the intensity of the emotions expressed in a piece of text. The automated analysis of the multitude of messages delivered through social media is one of the hottest research fields, both in academy and in industry, due to its extremely high potential applicability in many different domains. This Special Issue describes both technological contributions to the field, mostly based on deep learning techniques, and specific applications in areas like health insurance, gender classification, recommender systems, and cyber aggression detection.

Remote Sensing based Building Extraction

Authors: --- --- ---
ISBN: 9783039283828 9783039283835 Year: Pages: 442 DOI: 10.3390/books978-3-03928-383-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Construction
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Building extraction from remote sensing data plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Even though significant research has been carried out for more than two decades, the success of automatic building extraction and modeling is still largely impeded by scene complexity, incomplete cue extraction, and sensor dependency of data. Most recently, deep neural networks (DNN) have been widely applied for high classification accuracy in various areas including land-cover and land-use classification. Therefore, intelligent and innovative algorithms are needed for the success of automatic building extraction and modeling. This Special Issue focuses on newly developed methods for classification and feature extraction from remote sensing data for automatic building extraction and 3D

Keywords

roof segmentation --- outline extraction --- convolutional neural network --- boundary regulated network --- very high resolution imagery --- building boundary extraction --- convolutional neural network --- active contour model --- high resolution optical images --- LiDAR --- richer convolution features --- building edges detection --- high spatial resolution remote sensing imagery --- building --- modelling --- reconstruction --- change detection --- LiDAR --- point cloud --- 3-D --- building extraction --- deep learning --- attention mechanism --- very high resolution --- imagery --- building detection --- aerial images --- feature-level-fusion --- straight-line segment matching --- occlusion --- building regularization technique --- point clouds --- boundary extraction --- regularization --- building reconstruction --- digital building height --- 3D urban expansion --- land-use --- DTM extraction --- open data --- developing city --- accuracy analysis --- building detection --- building index --- feature extraction --- mathematical morphology --- morphological attribute filter --- morphological profile --- building extraction --- deep learning --- semantic segmentation --- data fusion --- high-resolution satellite images --- GIS data --- high-resolution aerial images --- deep learning --- generative adversarial network --- semantic segmentation --- Inria aerial image labeling dataset --- Massachusetts buildings dataset --- building extraction --- simple linear iterative clustering (SLIC) --- multiscale Siamese convolutional networks (MSCNs) --- binary decision network --- unmanned aerial vehicle (UAV) --- image fusion --- high spatial resolution remotely sensed imagery --- object recognition --- deep learning --- method comparison --- LiDAR point cloud --- building extraction --- elevation map --- Gabor filter --- feature fusion --- semantic segmentation --- urban building extraction --- deep convolutional neural network --- VHR remote sensing imagery --- U-Net --- remote sensing --- deep learning --- building extraction --- web-net --- ultra-hierarchical sampling --- 3D reconstruction --- indoor modelling --- mobile laser scanning --- point clouds --- 5G signal simulation --- building extraction --- high-resolution aerial imagery --- fully convolutional network --- semantic segmentation --- n/a

Diagnosis of Neurogenetic Disorders: Contribution of Next Generation Sequencing and Deep Phenotyping

Author:
ISBN: 9783039216109 9783039216116 Year: Pages: 94 DOI: 10.3390/books978-3-03921-611-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Neurology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The contribution of genomic variants to the aetiopathogenesis of both paediatric and adult neurological disease is being increasingly recognized. The use of next-generation sequencing has led to the discovery of novel neurodevelopmental disorders, as exemplified by the deciphering developmental disorders (DDD) study, and provided insight into the aetiopathogenesis of common adult neurological diseases. Despite these advances, many challenges remain. Correctly classifying the pathogenicity of genomic variants from amongst the large number of variants identified by next-generation sequencing is recognized as perhaps the major challenge facing the field. Deep phenotyping (e.g., imaging, movement analysis) techniques can aid variant interpretation by correctly classifying individuals as affected or unaffected for segregation studies. The lack of information on the clinical phenotype of novel genetic subtypes of neurological disease creates limitations for genetic counselling. Both deep phenotyping and qualitative studies can capture the clinical and patient’s perspective on a disease and provide valuable information. This Special Issue aims to highlight how next-generation sequencing techniques have revolutionised our understanding of the aetiology of brain disease and describe the contribution of deep phenotyping studies to a variant interpretation and understanding of natural history.

Representation Learning for Natural Language Processing

Authors: --- ---
ISBN: 9789811555732 Year: Pages: 334 DOI: 10.1007/978-981-15-5573-2 Language: English
Publisher: Springer Nature
Subject: Computer Science --- Linguistics
Added to DOAB on : 2020-07-15 23:58:09
License:

Loading...
Export citation

Choose an application

Abstract

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Author:
ISBN: 9783039285761 / 9783039285778 Year: Pages: 244 DOI: 10.3390/books978-3-03928-577-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.

Keywords

memristor --- artificial synapse --- neuromorphic computing --- memristor-CMOS hybrid circuit --- temporal pooling --- sensory and hippocampal responses --- cortical neurons --- hierarchical temporal memory --- neocortex --- memristor-CMOS hybrid circuit --- defect-tolerant spatial pooling --- boost-factor adjustment --- memristor crossbar --- neuromorphic hardware --- memristor --- compact model --- emulator --- neuromorphic --- synapse --- STDP --- pavlov --- neuromorphic systems --- spiking neural networks --- memristors --- spike-timing-dependent plasticity --- RRAM --- vertical RRAM --- neuromorphics --- neural network hardware --- reinforcement learning --- AI --- neuromorphic computing --- multiscale modeling --- memristor --- optimization --- RRAM --- simulation --- memristors --- neuromorphic engineering --- OxRAM --- self-organization maps --- synaptic device --- memristor --- neuromorphic computing --- artificial intelligence --- hardware-based deep learning ICs --- circuit design --- memristor --- RRAM --- variability --- time series modeling --- autocovariance --- graphene oxide --- laser --- memristor --- crossbar array --- neuromorphic computing --- wire resistance --- synaptic weight --- character recognition --- neuromorphic computing --- Flash memories --- memristive devices --- resistive switching --- synaptic plasticity --- artificial neural network --- spiking neural network --- pattern recognition --- strongly correlated oxides --- resistive switching --- neuromorphic computing --- transistor-like devices --- artificial intelligence --- neural networks --- resistive switching --- memristive devices --- deep learning networks --- spiking neural networks --- electronic synapses --- crossbar array --- pattern recognition

Listing 1 - 10 of 37 << page
of 4
>>
Sort by