Search results: Found 5

Listing 1 - 5 of 5
Sort by
Polyamine Metabolism in Disease and Polyamine-Targeted Therapies

Author:
ISBN: 9783039211524 9783039211531 Year: Pages: 240 DOI: 10.3390/books978-3-03921-153-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Polyamines are ubiquitous polycations essential for all cellular life. The most common polyamines in eukaryotes, spermine, spermidine, and putrescine, exist in millimolar intracellular concentrations that are tightly regulated through biosynthesis, catabolism, and transport. Polyamines interact with, and regulate, negatively charged macromolecules, including nucleic acids, proteins, and ion channels. Accordingly, alterations in polyamine metabolism affect cellular proliferation and survival through changes in gene expression and transcription, translation, autophagy, oxidative stress, and apoptosis. Dysregulation of these multifaceted polyamine functions contribute to multiple disease processes, thus their metabolism and function have been targeted for preventive or therapeutic intervention. The correlation between elevated polyamine levels and cancer is well established, and ornithine decarboxylase, the rate-limiting biosynthetic enzyme in the production of putrescine, is a bona fide transcriptional target of the Myc oncogene. Furthermore, induced polyamine catabolism contributes to carcinogenesis that is associated with certain forms of chronic infection and/or inflammation through the production of reactive oxygen species. These and other characteristics specific to cancer cells have led to the development of polyamine-based agents and inhibitors aimed at exploiting the polyamine metabolic pathway for chemotherapeutic and chemopreventive benefit. In addition to cancer, polyamines are involved in the pathologies of neurodegenerative diseases including Alzheimer’s and Parkinson’s, parasitic and infectious diseases, wound healing, ischemia/reperfusion injuries, and certain age-related conditions, as polyamines are known to decrease with age. As in cancer, polyamine-based therapies for these conditions are an area of active investigation. With recent advances in immunotherapy, interest has increased regarding polyamine-associated modulation of immune responses, as well as potential immunoregulation of polyamine metabolism, the results of which could have relevance to multiple disease processes. The goal of this Special Issue of Medical Sciences is to present the most recent advances in polyamine research as it relates to health, disease, and/or therapy.

Keywords

polyamine transport inhibitor --- Drosophila imaginal discs --- difluoromethylorthinine --- DFMO --- polyamine --- cancer --- metabolism --- difluoromethylornithine --- polyamine transport inhibitor --- pancreatic ductal adenocarcinoma --- curcumin --- diferuloylmethane --- ornithine decarboxylase --- polyamine --- NF-?B --- chemoprevention --- carcinogenesis --- polyphenol --- ornithine decarboxylase --- polyamines --- untranslated region --- polyamines --- ?-difluoromethylornithine --- polyamine transport system --- melanoma --- mutant BRAF --- spermine --- spermidine --- putrescine --- polyamine metabolism --- mast cells --- eosinophils --- neutrophils --- M2 macrophages --- airway smooth muscle cells --- Streptococcus pneumoniae --- polyamines --- pneumococcal pneumonia --- proteomics --- capsule --- complementation --- metabolism --- cadaverine --- polyamines --- ornithine decarboxylase --- difluoromethylornithine --- eflornithine --- DFMO --- African sleeping sickness --- hirsutism --- colorectal cancer --- neuroblastoma --- aging --- atrophy --- autophagy --- oxidative stress --- polyamines --- skeletal muscle --- spermidine --- spermine oxidase --- transgenic mouse --- immunity --- T-lymphocytes --- B-lymphocytes --- tumor immunity --- metabolism --- epigenetics --- autoimmunity --- polyamines --- ornithine decarboxylase --- polyamine analogs --- spermidine/spermine N1-acetyl transferase --- spermine oxidase --- bis(ethyl)polyamine analogs --- breast cancer --- MCF-7 cells --- transgenic mice --- polyamines --- MYC --- protein synthesis in cancer --- neuroblastoma --- protein expression --- antizyme 1 --- ornithine decarboxylase --- CRISPR --- human embryonic kidney 293 (HEK293) --- cell differentiation --- DFMO --- ornithine decarboxylase --- osteosarcoma --- polyamines --- polyamines --- polyamine metabolism --- antizyme --- antizyme inhibitors --- ornithine decarboxylase --- Snyder-Robinson Syndrome --- spermine synthase --- X-linked intellectual disability --- polyamine transport --- spermidine --- spermine --- transglutaminase

Biogenic Amines on Food Safety

Authors: ---
ISBN: 9783039210541 9783039210558 Year: Pages: 202 DOI: 10.3390/books978-3-03921-055-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Biogenic amines have been known for some time. These compounds are found in varying concentrations in a wide range of foods (fish, cheese, meat, wine, beer, vegetables, etc.) and their formations are influenced by different factors associated to those foods (composition, additives, ingredients, storage, microorganism, packaging, handing, conservation, etc.). The intake of foods containing high concentrations of biogenic amines can present a health hazard. Additionally, they have been used to establish indexes in various foods in order to signal the degree of freshness and/or deterioration of food. Nowadays, there has been an increase in the number of food poisoning episodes in consumers associated with the presence of these biogenic amines, mainly associated with histamines. Food safety is one of the main concerns of the consumer and safety agencies of different countries (EFSA, FDA, FSCJ, etc.), which have, as one of their main objectives, to control these biogenic amines, principally histamine, to assure a high level of food safety.Therefore, it is necessary to deepen our understanding of the formation, monitoring and reduction of biogenic amines during the development, processing and storage of food, even the effect of biogenic amines in consumers after digestion of foods with different levels of these compounds.With this aim, we are preparing a Special Issue on the topic of ""Biogenic Amines in Food Safety"", and we invite researchers to contribute original and unpublished research articles and reviews articles that involve studies of biogenic amines in food, which can provide an update to our knowledge of these compounds and their impacts on food quality and food safety.

Bioactive Components in Fermented Foods and Food By-Products

Authors: --- ---
ISBN: 9783039288519 / 9783039288526 Year: Pages: 140 DOI: 10.3390/books978-3-03928-852-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Food fermentation is one of the most ancient processes of food production that has historically been used to extend food shelf life and to enhance its organoleptic properties. However, several studies have demonstrated that fermentation is also able to increase the nutritional value and/or digestibility of food. Firstly, microorganisms are able to produce huge amounts of secondary metabolites with excellent health benefits and preservative properties (i.e., antimicrobial activity). Secondarily, fermented foods contain living organisms that contribute to the modulation of the host physiological balance, which constitutes an opportunity to enrich the diet with new bioactive molecules. Indeed, some microorganisms can increase the levels of numerous bioactive compounds (e.g., vitamins, antioxidant compounds, peptides, etc.). Moreover, recent advances in fermentation have focused on food by-products; in fact, they are a source of potentially bioactive compounds that, after fermentation, could be used as ingredients for nutraceuticals and functional food formulations. Because of that, understanding the benefits of food fermentation is a growing field of research in nutrition and food science. This book aims to present the current knowledge and research trends concerning the use of fermentation technologies as sustainable and GRAS processes for food and nutraceutical production.

Asymmetric and Selective Biocatalysis

Authors: ---
ISBN: 9783038978466 9783038978473 Year: Pages: 154 DOI: 10.3390/books978-3-03897-847-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-06-26 09:16:44
License:

Loading...
Export citation

Choose an application

Abstract

This Issue contains one communication, six articles, and two reviews. The communication from Paola Vitale et al. represents a work where whole cells were used as biocatalysts for the reduction of optically active chloroalkyl arylketones followed by a chemical cyclization to give the desired heterocycles. Among the various whole cells screened (baker’s yeast, Kluyveromyces marxianus CBS 6556, Saccharomyces cerevisiae CBS 7336, Lactobacillus reuteri DSM 20016), baker’s yeast provided the best yields and the highest enantiomeric ratios (95:5) in the bioreduction of the above ketones. In this respect, valuable chiral non-racemic functionalized oxygen-containing heterocycles (e.g., (S)-styrene oxide, (S)-2-phenyloxetane, (S)-2-phenyltetrahydrofuran), amenable to be further elaborated on, can be smoothly and successfully generated from their prochiral precursors. Studies about pure biocatalysts with mechanistical studies, application in different reactions, and new immobilization methods for improving their stability were reported in five different articles. The article by Su-Yan Wang et al. describes the cloning, expression, purification, and characterization of an N-acetylglucosamine 2-epimerase from Pedobacter heparinus (PhGn2E). For this, several N-acylated glucosamine derivatives were chemically synthesized and used to test the substrate specificity of the enzyme. The mechanism of the enzyme was studied by hydrogen/deuterium NMR. The study at the anomeric hydroxyl group and C-2 position of the substrate in the reaction mixture confirmed the epimerization reaction via ring-opening/enolate formation. Site-directed mutagenesis was also used to confirm the proposed mechanism of this interesting enzyme. The article by Forest H. Andrews et al. studies two enzymes, benzoylformate decarboxylase (BFDC) and pyruvate decarboxylase (PDC), which catalyze the non-oxidative decarboxylation of 2-keto acids with different specificity. BFDC from Pseudomonas putida exhibited very limited activity with pyruvate, whereas the PDCs from S. cerevisiae or from Zymomonas mobilis showed virtually no activity with benzoylformate (phenylglyoxylate). After studies using saturation mutagenesis, the BFDC T377L/A460Y variant was obtained, with 10,000-fold increase in pyruvate/benzoylformate. The change was attributed to an improvement in the Km value for pyruvate and a decrease in the kcat value for benzoylformate. The characterization of the new catalyst was performed, providing context for the observed changes in the specificity. The article by Xin Wang et al. compares two types of biocatalysts to produce D-lysine L-lysine in a cascade process catalyzed by two enzymes: racemase from microorganisms that racemize L-lysine to give D,L-lysine and decarboxylase that can be in cells, permeabilized cells, and the isolated enzyme. The comparison between the different forms demonstrated that the isolated enzyme showed the higher decarboxylase activity. Under optimal conditions, 750.7 mmol/L D-lysine was finally obtained from 1710 mmol/L L-lysine after 1 h of racemization reaction and 0.5 h of decarboxylation reaction. D-lysine yield could reach 48.8% with enantiomeric excess (ee) of 99%. In the article by Rivero and Palomo, lipase from Candida rugosa (CRL) was highly stabilized at alkaline pH in the presence of PEG, which permitted its immobilization for the first time by multipoint covalent attachment on different aldehyde-activated matrices. Different covalent immobilized preparation of the enzyme was successfully obtained. The thermal and solvent stability was highly increased by this treatment, and the novel catalysts showed high regioselectivity in the deprotection of per-O-acetylated nucleosides. The article by Robson Carlos Alnoch et al. describes the protocol and use of a new generation of tailor-made bifunctional supports activated with alkyl groups that allow the immobilization of proteins through the most hydrophobic region of the protein surface and aldehyde groups that allows the covalent immobilization of the previously adsorbed proteins. These supports were especially used in the case of lipase immobilization. The immobilization of a new metagenomic lipase (LipC12) yielded a biocatalyst 3.5-fold more active and 5000-fold more stable than the soluble enzyme. The PEGylated immobilized lipase showed high regioselectivity, producing high yields of the C-3 monodeacetylated product at pH 5.0 and 4 °C. Hybrid catalysts composed of an enzyme and metallic complex are also treated in this Special Issue. The article by Christian Herrero et al. describes the development of the Mn(TpCPP)-Xln10A artificial metalloenzyme, obtained by non-covalent insertion of Mn(III)-meso-tetrakis(p-carboxyphenyl)porphyrin [Mn(TpCPP), 1-Mn] into xylanase 10A from Streptomyces lividans (Xln10A). The complex was found able to catalyze the selective photo-induced oxidation of organic substrates in the presence of [RuII(bpy)3]2+ as a photosensitizer and [CoIII(NH3)5Cl]2+ as a sacrificial electron acceptor, using water as oxygen atom source. The two published reviews describe different subjects with interest in the fields of biocatalysis and mix metallic-biocatalysis, respectively. The review by Anika Scholtissek et al. describes the state-of-the-art regarding ene-reductases from the old yellow enzyme family (OYEs) to catalyze the asymmetric hydrogenation of activated alkenes to produce chiral products with industrial interest. The dependence of OYEs on pyridine nucleotide coenzyme can be avoided by using nicotinamide coenzyme mimetics. In the review, three main classes of OYEs are described and characterized. The review by Yajie Wang and Huimin Zhao highlights some of the recent examples in the past three years that combine transition metal catalysis with enzymatic catalysis. With recent advances in protein engineering, catalyst synthesis, artificial metalloenzymes, and supramolecular assembly, there is great potential to develop more sophisticated tandem chemoenzymatic processes for the synthesis of structurally complex chemicals. In conclusion, these nine publications give an overview of the possibilities of different catalysts, both traditional biocatalysts and hybrids with metals or organometallic complexes to be used in different processes—particularly in synthetic reactions—under very mild reaction conditions.

Plant Protein and Proteome Altlas--Integrated Omics Analyses of Plants under Abiotic Stresses

Authors: --- --- --- --- et al.
ISBN: 9783039219605 / 9783039219612 Year: Pages: 558 DOI: 10.3390/books978-3-03921-961-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Botany
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Integrative omics of plants in response to stress conditions play more crucial roles in the post-genomic era. High-quality genomic data provide more deeper understanding of how plants to survive under environmental stresses. This book is focused on concluding the recent progress in the Protein and Proteome Atlas in plants under different stresses. It covers various aspects of plant protein ranging from agricultural proteomics, structure and function of proteins, and approaches for protein identification and quantification.

Keywords

proteomic --- postharvest freshness --- ATP synthase --- ATP synthase CF1 alpha subunit (chloroplast) --- chlorophyll fluorescence parameters --- photosynthetic parameters --- drought stress --- Triticum aestivum L. --- comparative proteomic analysis --- iTRAQ --- VIGS --- Jatropha curcas --- phosphoproteomics --- seedling --- chilling stress --- regulated mechanism --- Alternanthera philoxeroides --- proteomic --- stem --- potassium --- stress --- Salinity stress --- Dunaliella salina --- isobaric tags for relative and absolute quantitation --- differentially abundant proteins --- proteomics --- arbuscular mycorrhizal fungi --- salt stress --- E. angustifolia --- proteomics --- wheat --- root --- wood vinegar --- drought stress --- ROS --- ABA --- proteome --- maize --- AGPase --- phosphorylation --- brittle-2 --- phos-tagTM --- MIPS --- exon-intron structure diversity --- Gossypium hirsutum --- loss-of-function mutant --- root cell elongation --- CHA-SQ-1 --- cytomorphology --- pollen abortion --- proteomics --- wheat --- cotton --- somatic embryogenesis --- transdifferentiation --- quantitative proteomics --- regulation and metabolism --- molecular basis --- concerted network --- maize --- phosphoproteomics --- salt tolerance --- label-free quantification --- root and shoot --- sugar beet --- salt stress --- S-adenosylmethionine decarboxylase --- ROS --- antioxidant enzyme --- cotton --- somatic embryogenesis --- transdifferentiation --- widely targeted metabolomics --- purine metabolism --- flavonoid biosynthesis --- molecular and biochemical basis --- transcript-metabolite network --- leaf sheath --- maturation --- transcriptional dynamics --- transcriptome --- abiotic stress --- silicate limitation --- diatom --- iTRAQ --- proteomics --- photosynthesis --- carbon fixation --- natural rubber biosynthesis --- mass spectrometry --- rubber grass --- rubber latex --- shotgun proteomics --- Taraxacum kok-saghyz --- two-dimensional gel electrophoresis --- visual proteome map --- proteomics --- wheat --- drought --- leaf --- iTRAQ --- micro-exons --- constitutive splicing --- alternative splicing --- ancient genes --- domain --- radish --- heat stress --- transcriptome sequencing --- lncRNA --- miRNA --- physiological response --- Millettia pinnata --- woody oilseed plants --- seed development --- miRNA --- nitrogen fertilizer --- rice --- proteome --- cultivars --- nitrogen use efficiency (NUE) --- Nelumbo nucifera --- phylogeny --- genomics --- molecular mechanisms --- model plant --- proteomes --- iTRAQ --- filling kernel --- drought stress --- heat shock proteins --- Zea mays L. --- wucai --- low-temperature stress --- high-temperature stress --- proteomics --- redox homeostasis --- GLU1 --- glutathione --- heat response --- heat-sensitive spinach variety --- proteomics --- ROS scavenging --- inositol --- phosphatidylinositol --- phosphatase --- stress --- signaling pathway --- integrated omics --- plants under stress --- post-genomics era --- proteome atlas --- quantitative proteomics

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)


License

CC by-nc-nd (5)


Language

english (3)

eng (2)


Year
From To Submit

2020 (2)

2019 (3)