Search results: Found 9

Listing 1 - 9 of 9
Sort by
Nichtlineare Schwingungen von Systemen mit elastohydrodynamischen Linienkontakten

Author:
Book Series: Schriftenreihe des Instituts für Technische Mechanik, Karlsruher Institut für Technologie ISSN: 16143914 ISBN: 9783731503507 Year: Volume: 25 Pages: VIII, 155 p. DOI: 10.5445/KSP/1000045952 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

The influence of elastohydrodynamic contacts (EHL) on the nonlinear vibration behaviour of mechanical systems is investigated. A continuously modelled EHL contact is computationally expensive. Therefore, a simplified contact model, which is particularly suitable for oscillatory systems with numerous contacts, has to be developed and validated. Based on basic models, nonlinear oscillation phenomena induced by EHL contacts are discussed. Moreover, a rotor in cylinder roller bearings is considered.

Topological Groups. Advances, Surveys, and Open Questions

Author:
ISBN: 9783038976448 Year: Pages: 160 DOI: 10.3390/books978-3-03897-645-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Following the tremendous reception of our first volume on topological groups called ""Topological Groups: Yesterday, Today, and Tomorrow"", we now present our second volume. Like the first volume, this collection contains articles by some of the best scholars in the world on topological groups. A feature of the first volume was surveys, and we continue that tradition in this volume with three new surveys. These surveys are of interest not only to the expert but also to those who are less experienced. Particularly exciting to active researchers, especially young researchers, is the inclusion of over three dozen open questions. This volume consists of 11 papers containing many new and interesting results and examples across the spectrum of topological group theory and related topics. Well-known researchers who contributed to this volume include Taras Banakh, Michael Megrelishvili, Sidney A. Morris, Saharon Shelah, George A. Willis, O'lga V. Sipacheva, and Stephen Wagner.

Computational Aerodynamic Modeling of Aerospace Vehicles

Authors: ---
ISBN: 9783038976103 Year: Pages: 294 DOI: 10.3390/books978-3-03897-611-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Transportation
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.

Keywords

wake --- bluff body --- square cylinder --- DDES --- URANS --- turbulence model --- large eddy simulation --- Taylor–Green vortex --- numerical dissipation --- modified equation analysis --- truncation error --- MUSCL --- dynamic Smagorinsky subgrid-scale model --- kinetic energy dissipation --- computational fluid dynamics (CFD) --- microfluidics --- numerical methods --- gasdynamics --- shock-channel --- microelectromechanical systems (MEMS) --- discontinuous Galerkin finite element method (DG–FEM) --- fluid mechanics --- characteristics-based scheme --- multi-directional --- Riemann solver --- Godunov method --- bifurcation --- wind tunnel --- neural networks --- modeling --- unsteady aerodynamic characteristics --- high angles of attack --- hypersonic --- wake --- chemistry --- slender-body --- angle of attack --- detection --- after-body --- S-duct diffuser --- flow distortion --- flow control --- vortex generators --- aeroelasticity --- reduced-order model --- flutter --- wind gust responses --- computational fluid dynamics --- convolution integral --- sharp-edge gust --- reduced order aerodynamic model --- geometry --- meshing --- aerodynamics --- CPACS --- MDO --- VLM --- Euler --- CFD --- variable fidelity --- multi-fidelity --- aerodynamic performance --- formation --- VLM --- RANS --- hybrid reduced-order model --- quasi-analytical --- aeroelasticity --- flexible wings --- subsonic --- wing–propeller aerodynamic interaction --- p-factor --- installed propeller --- overset grid approach

Engineering Fluid Dynamics 2018

Author:
ISBN: 9783039281121 9783039281138 Year: Pages: 256 DOI: 10.3390/books978-3-03928-113-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

“Engineering Fluid Dynamics 2018”. The topic of engineering fluid dynamics includes both experimental as well as computational studies. Of special interest were submissions from the fields of mechanical, chemical, marine, safety, and energy engineering. We welcomed both original research articles as well as review articles. After one year, 28 papers were submitted and 14 were accepted for publication. The average processing time was 37.91 days. The authors had the following geographical distribution: China (9); Korea (3); Spain (1); and India (1). Papers covered a wide range of topics, including analysis of fans, turbines, fires in tunnels, vortex generators, deep sea mining, as well as pumps.

Keywords

axial fan --- rotating stall --- aerodynamic noise --- numerical simulation --- noise spectrum --- centrifugal pump --- radiation noise --- distribution characteristic --- acoustic energy --- experimental research --- thermosyphon --- volume of fluid --- multiphase flow --- evaporation and condensation --- centrifugal pump --- impeller --- blade wrap angle --- blade exit angle --- optimized design --- deep sea mining --- manganese nodules exploitation --- hydraulic collecting --- suction flow field --- dimensional analysis --- circumferential groove casing treatment --- sweep and lean --- CGCT-blade integrated optimization --- computational fluid dynamics (CFD) --- flow around cylinder --- fluid structure interaction (FSI) --- hydrodynamic response --- numerical methods --- simulation and modeling --- vortex induced vibration (VIV) ratio --- gas turbine --- axial gap --- hot streak --- heat transfer --- leading edge --- global optimization --- cavitation inception --- orthogonal test --- CFD simulation --- two-stage axial fan --- numerical simulation --- abnormal blade installation angle --- rotating stall --- Tesla turbine --- fluid dynamics --- disc thickness --- disc spacing distance --- isentropic efficiency --- plug-holing --- tunnel slope --- fire --- natural ventilation --- ventilation performance --- aspect ratio --- evacuation --- fire propagation --- tunnel vehicle fire --- unsteady heat release rate --- flow control --- vortex generators --- source term --- Computational Fluid Dynamics (CFD) --- OpenFOAM --- wind tunnel

Data Acquisition and Processing in Cultural Heritage

Authors: --- --- ---
ISBN: 9783039217403 9783039217410 Year: Pages: 276 DOI: 10.3390/books978-3-03921-741-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Advances in the knowledge of the tangible components (position, size, shape) and intangible components (identity, habits) of an historic building or site involves fundamental and complex tasks in any project related to the conservation of cultural heritage (CH). In recent years, new geotechnologies have proven their usefulness and added value to the field of cultural heritage (CH) in the tasks of recording, modeling, conserving, and visualizing. In addition, current developments in building information modeling (HBIM), allow integration and simulation of different sources of information, generating a digital twin of any complex CH construction. As a result, experts in the area have increased the number of available sensors and methodologies. However, the quick evolution of geospatial technologies makes it necessary to revise their use, integration, and application in CH. This process is difficult to adopt, due to the new options which are opened for the study, analysis, management, and valorization of CH. Therefore, the aim of the present Special Issue is to cover the latest relevant topics, trends, and best practices in geospatial technologies and processing methodologies for CH sites and scenarios as well as to introduce the new tendencies. This book originates from the Special Issue “Data Acquisition and Processing in Cultural Heritage”, focusing primarily on data and sensor integration for CH; documentation/restoration in CH; heritage 3D documentation and modeling of complex CH sites; drone inspections in CH; software development in CH; and augmented reality in CH. It is hoped that this book will provide the advice and guidance required for any CH professional, making the best possible use of these sensors and methods in CH.

Metal Plasticity and Fatigue at High Temperature

Authors: --- ---
ISBN: 9783039287703 / 9783039287710 Year: Pages: 220 DOI: 10.3390/books978-3-03928-771-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue.

Symmetry and Fluid Mechanics

Author:
ISBN: 9783039284269 9783039284276 Year: Pages: 446 DOI: 10.3390/books978-3-03928-427-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Since the 1980s, attention has increased in the research of fluid mechanics due to its wide application in industry and phycology. Major advances have occurred in the modeling of key topics such Newtonian and non-Newtonian fluids, nanoparticles, thermal management, and physiological fluid phenomena in biological systems, which have been published in this Special Issue on symmetry and fluid mechanics for Symmetry. Although, this book is not a formal textbook, it will be useful for university teachers, research students, and industrial researchers and for overcoming the difficulties that occur when considering the nonlinear governing equations. For such types of equations, obtaining an analytic or even a numerical solution is often more difficult. This book addresses this challenging job by outlining the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Keywords

stagnation point flow --- numerical solution --- magnetic field --- nanofuid --- unsteady rotating flow --- porous medium --- aqueous suspensions of CNT’s --- nonlinear thermal radiation --- viscous dissipation effect --- HAM --- chemical reaction --- activation energy --- peristalsis --- couple stress fluid --- nanoparticle --- Keller-box method --- Newtonian heating --- nonlinear thermal radiation --- nonlinear stretching cylinder --- homogeneous/heterogeneous reactions --- nanofluid --- steady laminar flow --- nanofluid --- heat source/sink --- magnetic field --- stretching sheet --- SWCNT/MWCNT nanofluid --- thin needle --- classical and fractional order problems --- APCM technique --- SWCNTs --- MWCNTs --- stretched surface --- rotating system --- nanofluid --- MHD --- thermal radiation --- HAM --- nonlinear hydroelastic waves --- uniform current --- thin elastic plate --- solitary waves --- PLK method --- Permeable walls --- suction/injection --- nanofluids --- porous medium --- mixed convection --- magnetohydrodynamic (MHD) --- dual solution --- stability analysis --- Darcy Forchheimer model --- nanofluid --- exponential sheet --- Jeffrey fluid --- laminar g-Jitter flow --- inclined stretching sheet --- heat source/sink --- Magnetohydrodynamic (MHD) --- Jefferey, Maxwell and Oldroyd-B fluids --- Cattaneo–Christov heat flux --- homogeneous–heterogeneous reactions --- analytical technique --- Numerical technique --- viscous fluid --- Caputo–Fabrizio time-fractional derivative --- Laplace and Fourier transformations --- side walls --- oscillating shear stress --- forced convection --- microducts --- Knudsen number --- Nusselt number --- artificial neural networks --- particle swarm optimization --- Casson fluid --- chemical reaction --- cylinder --- heat generation --- magnetohydrodynamic (MHD) --- slip --- Carreau fluid --- Cattaneo–Christov heat flux model --- convective heat boundary condition --- temperature dependent thermal conductivity --- homogeneous-heterogeneous reactions --- integer and non-integer order derivatives --- GO-W/GO-EG nanofluids --- Marangoni convection --- FDE-12 numerical method --- couple stress fluid --- Hafnium particles --- Couette–Poiseuille flow --- shooting method --- magnetic field --- Darcy–Brinkman porous medium --- viscous dissipation --- slip conditions --- porous dissipation --- permeable sheet --- stretchable rotating disk --- CNTs (MWCNTs and SWCNTs) --- velocity slip --- convective boundary condition --- OHAM --- Casson fluid model --- rotating rigid disk --- nanoparticles --- Magnetohydrodynamics (MHD) --- Oil/MWCNT nanofluid --- heat transfer --- finite volume method --- laminar flow --- slip coefficient --- microchannel --- arched surface --- nonlinear thermal radiation --- molecular diameter --- Al2O3 nanoparticles --- streamlines --- isotherms --- RK scheme --- peristaltic transport --- tapered channel --- porous medium --- smart pumping for hemodialysis --- thermal radiation --- compressible viscous flow --- symmetric linear equations --- generalized finite difference scheme --- kernel gradient free --- Lagrangian approach --- Newtonian and non-Newtonian fluids --- nanofluids and particle shape effects --- convective heat and mass transfer --- steady and unsteady flow problems --- multiphase flow simulations --- fractional order differential equations --- thermodynamics --- physiological fluid phenomena in biological systems

Multi-Objective and Multi-Attribute Optimisation for Sustainable Development Decision Aiding

Authors: --- ---
ISBN: 9783039211425 9783039211432 Year: Pages: 394 DOI: 10.3390/books978-3-03921-143-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Optimization is considered as a decision-making process for getting the most out of available resources for the best attainable results. Many real-world problems are multi-objective or multi-attribute problems that naturally involve several competing objectives that need to be optimized simultaneously, while respecting some constraints or involving selection among feasible discrete alternatives. In this Reprint of the Special Issue, 19 research papers co-authored by 88 researchers from 14 different countries explore aspects of multi-objective or multi-attribute modeling and optimization in crisp or uncertain environments by suggesting multiple-attribute decision-making (MADM) and multi-objective decision-making (MODM) approaches. The papers elaborate upon the approaches of state-of-the-art case studies in selected areas of applications related to sustainable development decision aiding in engineering and management, including construction, transportation, infrastructure development, production, and organization management.

Keywords

port scheduling --- berth-quay crane joint scheduling --- optimization study --- hybrid mathematical model --- multi-objective decision-making (MODM) --- sustainability --- vibration suppression --- single-cylinder engine --- multi-objective evolutionary algorithms --- dynamic analysis --- crank–slider --- ecological building --- clay blocks --- compacted clay --- straw bales --- cost calculation --- group decision making --- hesitant fuzzy set --- hospital evaluation --- linguistic hesitant fuzzy set and Standard variance --- bi-objective optimization --- heuristics --- discrete time/cost trade-off --- project scheduling --- Rough Hamy aggregator --- sustainable traffic --- Rough BWM --- Rough WASPAS --- construction --- roundabout --- optimization --- genetic algorithm --- artificial neural network --- apple --- drying --- rehydration --- renewable energy --- technology selection problem --- sustainable energy evaluation --- sustainable energy developments --- sustainable developments --- hierarchical SWARA --- MULTIMOORA --- multiple criteria decision making (MCDM) --- Multiple Attribute Decision Making (MADM) --- ranking --- healthcare facility --- location-allocation problem --- multiple objective optimization --- bi-level programming --- particle swarm optimization (PSO) --- cleaner production (CP) --- extended Tomada de Decisão Interativa Multicritério (TODIM) --- probabilistic linguistic term sets (PLTSs) --- hybrid multi-criteria decision making (MCDM) --- gold mines --- conceptual framework --- organizations --- sustainability --- sustainability hierarchy --- Total Interpretive Structural Modeling (TISM) --- sustainable transport --- public transport --- emission of pollutants --- travel times --- bus pass --- MCDM --- critical information infrastructures --- fuzzy --- AHP --- WSM --- WASPAS --- MCDM --- hybrid --- management --- grey --- SWARA --- TOPSIS-GM --- ARAS-G --- Geomean --- energy efficiency --- comfort of use of buildings --- historic buildings --- sustainable development --- surface transport --- innovation in transport --- policy measures --- sustainable transport policy --- multiple criteria decision aid --- hybrid expert system --- bat algorithm --- particle swarm optimization algorithm --- multi-purpose system --- water resource management --- project --- construction --- contractor --- multiple-criteria decision-making --- AHP --- sustainable solution --- choice --- expert --- building investment project --- risk --- assessment --- verbal analysis --- multiple-attribute decision-making (MADM) --- multi-objective decision-making (MODM) --- optimization --- engineering --- management --- sustainable development

Discrete Mathematics and Symmetry

Author:
ISBN: 9783039281909 9783039281916 Year: Pages: 458 DOI: 10.3390/books978-3-03928-191-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group.

Keywords

strongly regular graph --- automorphism group --- orbit matrix --- binary polyhedral group --- icosahedron --- dodecahedron --- 600-cell --- Electric multiple unit trains --- high-level maintenance planning --- time window --- 0–1 programming model --- particle swarm algorithm --- fixed point --- split-quaternion --- quadratic polynomial --- split-octonion --- neutrosophic set --- neutrosophic rough set --- pessimistic (optimistic) multigranulation neutrosophic approximation operators --- complete lattice --- rough set --- matroid --- operator --- attribute reduction --- graded rough sets --- rough intuitionistic fuzzy sets --- dominance relation --- logical conjunction operation --- logical disjunction operation --- multi-granulation --- planar point set --- convex polygon --- disjoint holes --- fuzzy logic --- pseudo-BCI algebra --- quasi-maximal element --- KG-union --- quasi-alternating BCK-algebra --- quality function deployment --- engineering characteristics --- group decision making --- 2-tuple --- metro station --- emergency routes --- graph partitioning --- graph clustering --- invariant measures --- partition comparison --- finite automorphism groups --- graph automorphisms --- Fuzzy sets --- ring --- normed space --- fuzzy normed ring --- fuzzy normed ideal --- fuzzy implication --- quantum B-algebra --- q-filter --- quotient algebra --- basic implication algebra --- Detour–Harary index --- maximum --- unicyclic --- bicyclic --- cacti --- three-way decisions --- intuitionistic fuzzy sets --- multi-granulation rough intuitionistic fuzzy sets --- granularity importance degree --- complexity --- Chebyshev polynomials --- gear graph --- pyramid graphs --- edge detection --- Laplacian operation --- regularization --- parameter selection --- performance evaluation --- aggregation operator --- triangular norm --- ?-convex set --- atom-bond connectivity index --- geometric arithmetic index --- line graph --- generalized bridge molecular graph --- graceful labeling --- edge graceful labeling --- edge even graceful labeling --- polar grid graph --- graph --- good drawing --- crossing number --- join product --- cyclic permutation --- nonlinear --- synchronized --- linear discrete --- chaotic system --- algorithm --- generalized permanental polynomial --- coefficient --- co-permanental --- isoperimetric number --- random graph --- intersection graph --- social network --- Abel–Grassmann’s groupoid (AG-groupoid) --- Abel–Grassmann’s group (AG-group) --- involution AG-group --- commutative group --- filter --- graceful labeling --- edge even graceful labeling --- cylinder grid graph --- selective maintenance --- multi-state system --- human reliability --- optimization --- genetic algorithm --- hypernear-ring --- multitransformation --- embedding --- distance matrix (spectrum) --- distance signlees Laplacian matrix (spectrum) --- (generalized) distance matrix --- spectral radius --- transmission regular graph --- graph --- good drawing --- crossing number --- join product --- cyclic permutation --- cyclic associative groupoid (CA-groupoid) --- cancellative --- variant CA-groupoids --- decomposition theorem --- construction methods

Listing 1 - 9 of 9
Sort by
Narrow your search