Search results: Found 12

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Cyanobacteria: The Green E. coli

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198122 Year: Pages: 114 DOI: 10.3389/978-2-88919-812-2 Language: English
Publisher: Frontiers Media SA
Subject: Biotechnology --- General and Civil Engineering
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

As the world struggles to reduce its dependence on fossil fuels and curb greenhouse gas emissions, industrial biotechnology is also ‘going green.’ Escherichia coli has long been used as a model Gram-negative bacterium, not only for fundamental research, but also for industrial applications. Recently, however, cyanobacteria have emerged as candidate chassis for the production of commodity fuels and chemicals, utilizing CO2 and sunlight as the main nutrient requirements. In addition to their potential for reducing greenhouse gas emissions and lowering production costs, cyanobacteria have naturally efficient pathways for the production metabolites such as carotenoids, which are of importance in the nutraceutical industry. The unique metabolic and regulatory pathways present in cyanobacteria present new challenges for metabolic engineers and synthetic biologists. Moreover, their requirement for light and the dynamic regulatory mechanisms of the diurnal cycle further complicate the development and application of cyanobacteria for industrial applications. Consequently, significant advancements in cyanobacterial engineering and strain development are necessary for the development of a ‘green E. coli’. This Research Topic will focus on cyanobacteria as organisms of emerging industrial relevance, including research focused on the development of genetic tools for cyanobacteria, the investigation of new cyanobacterial strains, the construction of novel cyanobacterial strains via genetic engineering, the application of ‘omics’ tools to advance the understanding of engineered cyanobacteria, and the development of computational models for cyanobacterial strain development.

Physiological and molecular ecology of aquatic cyanobacteria

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193189 Year: Pages: 127 DOI: 10.3389/978-2-88919-318-9 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Oceanography --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

The cyanobacteria inhabit every illuminated environment on Earth, from polar lakes to desert crusts and through their phototrophic metabolism play essential roles in global geochemical cycles. With the discovery of marine Synechococcus and Prochlorococcus almost 30 years ago, cyanobacteria have now earned their place as dominant primary producers contributing over 25 percent of global photosynthesis. Their global abundance is now explained from the coexistence of ecotypes that occupy different niches along spatial and temporal gradients. New ecotypes of Synechococcus have been identified as abundant components of microbial communities in freshwater environments and marginal seas. Extensive comparative genomics of marine and freshwater picocyanobacteria have begun to unmask adaptations to light and nutrient (N, P, Fe) limitation that these diverse environments present. Novel types of cyanobacterial diazotrophy input new N and structure microbial communities in the open sea. Current challenges include the understanding of the interactions between marine cyanobacteria and other microbes in their immediate community. In contrast, mesotrophic and eutrophic environments such as the Laurentian Great Lakes have been increasingly affected by nuisance and toxic cyanobacterial blooms that have yielded severe declines in water quality. Factors promoting bloom formation and the functional roles of toxins are important issues being addressed today.

Biotechnology of Microalgae, Based on Molecular Biology and Biochemistry of Eukaryotic Algae and Cyanobacteria

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451296 Year: Pages: 184 DOI: 10.3389/978-2-88945-129-6 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Bioechnology of microalgae takes much attention because of their ability to utilize light energy and fix CO2. Research in biotechnology of microalgae including eukaryotic algae and cyanobacteria is an important and attractive topic which attracts the interests of the public widely. This Research Topic aims to create a collection approaching biotechnology and biology of eukaryotic algae and cyanobacteria. Basic science of molecular biology and biochemistry is indispensable for proceeding future application of microalgae, and hence, the title includes "molecular biology" and "biochemistry". Broad range of basic and applied science of microalgae is appreciated in this special topic.

Assembly of the Photosystem II Membrane-Protein Complex of Oxygenic Photosynthesis

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452330 Year: Pages: 315 DOI: 10.3389/978-2-88945-233-0 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Photosystem II is a 700-kDa membrane-protein super-complex responsible for the light-driven splitting of water in oxygenic photosynthesis. The photosystem is comprised of two 350-kDa complexes each made of 20 different polypeptides and over 80 co-factors. While there have been major advances in understanding the mature structure of this photosystem many key protein factors involved in the assembly of the complex do not appear in the holoenzyme. The mechanism for assembling this super-complex is a very active area of research with newly discovered assembly factors and subcomplexes requiring characterization. Additionally the ability to split water is inseparable from light-induced photodamage that arises from radicals and reactive O2 species generated by Photosystem II chemistry. Consequently, to sustain water splitting, a “self repair” cycle has evolved whereby damaged protein is removed and replaced so as to extend the working life of the complex. Understanding how the biogenesis and repair processes are coordinated is among several important questions that remain to be answered. Other questions include: how and when are the inorganic cofactors inserted during the assembly and repair processes and how are the subcomplexes protected from photodamage during assembly? Evidence has also been obtained for Photosystem II biogenesis centers in cyanobacteria but do these also exist in plants? Do the molecular mechanisms associated with Photosystem II assembly shed fresh light on the assembly of other major energy-transducing complexes such as Photosystem I or the cytochrome b6/f complex or indeed other respiratory complexes? The contributions to this Frontiers in Plant Science Research Topic are likely to reveal new details applicable to the assembly of a range of membrane-protein complexes, including aspects of self-assembly and solar energy conversion that may be applied to artificial photosynthetic systems. In addition, a deeper understanding of Photosystem II assembly — particularly in response to changing environmental conditions — will provide new knowledge underpinning photosynthetic yields which may contribute to improved food production and long-term food security.

Harmful Algal Blooms (HABs) and Public Health: Progress and Current Challenges

ISBN: 9783038421559 9783038421566 Year: Pages: 316
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2016-05-20 15:26:51
License:

Loading...
Export citation

Choose an application

Abstract

Over the past decade, coastal and freshwater systems in the U.S. and worldwide have experienced an apparent increase in the frequency and geographic distribution of harmful algal blooms (HABs). These blooms can adversely affect both public health and ecosystem health. Toxin-producing HABs can accumulate in drinking and recreational waters and in foods of aquatic origin such as fish and seafood. Human and animal health risks include exposure to the toxins through eating contaminated food or drinking or swimming in contaminated water. Because of these potential public health risks, several countries and U.S. states have developed monitoring programs and guidelines for drinking and recreational water quality to protect public health. This special issue will present research papers and reviews on various aspects of public health and environmental responses to harmful algal blooms. [...]

Cyanobacteria and Cyanotoxins: New Advances and Future Challenges

Authors: ---
ISBN: 9783039218387 / 9783039218394 Year: Pages: 246 DOI: 10.3390/books978-3-03921-839-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Public Health
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Cyanobacteria are a group of ubiquitous photosynthetic prokaryotes. Their occurrence has been increasing worldwide, due to anthropogenic activities and climate change. Several cyanobacterial species are able to synthesize a high number of bioactive molecules, among them, cyanotoxins (microcystins, cylindrospermopsin, nodularin, etc.), which are considered a health concern. For risk assessment of cyanotoxins, more scientific knowledge is required to perform adequate hazard characterization, exposure evaluation and, finally, risk characterization of these toxins. This Special Issue “Cyanobacteria and Cyanotoxins: New Advances and Future Challenges” presents new research or review articles related to different aspects of cyanobacteria and cyanotoxins, and contributes to providing new toxicological data and methods for a more realistic risk assessment.

Keywords

cylindrospermopsin --- in vitro --- cytotoxicity --- oxidative stress --- genotoxicity --- microcystins --- taste-and-odor compounds --- water source --- drinking water treatment plant --- cyanobacterial thresholds --- arctic --- benthic mats --- cyanotoxins --- ELISA --- 16S rRNA gene --- apoptosis --- microcystin-LR (MC-LR) --- reproductive toxicity --- resveratrol --- sirtuin 1 (SIRT1) --- Aphanizomenon flos-aquae --- blue-green algae supplements --- cyanotoxins --- microcystin --- cylindrospermopsin --- saxitoxin --- cylindrospermopsin --- monoclonal antibody --- time-resolved fluoroimmunoassay --- method validation --- detection --- cyanobacteria --- cyanotoxins --- nutrient enrichment --- akinetes --- harmful algal blooms --- PCR --- phylogenetic analyses --- microcystin-LR --- Procambarus clarkii --- energy budget --- astaxanthin --- cylindrospermopsin --- anatoxin-a --- PSP toxins --- microcystins --- cyanobacteria --- Nostocales --- drinking water --- marine cyanobacteria --- cyanotoxins --- marine sponges --- secondary metabolites --- marine natural compounds --- bioassays --- Artemia salina --- Paracentrotus lividus --- hemolytic essay --- reservoir --- Yangtze estuary --- 16S rRNA gene sequencing --- shotgun metagenomic sequencing --- bacterial community --- microbial metabolisms --- [d-Leu1]Microcystin-LR --- Lithobates catesbeianus --- tadpoles --- exposure --- Histopathological evaluation --- microcystins --- cylindrospermopsin --- method validation --- UPLC-MS/MS --- lettuce --- genotoxicity --- mutagenicity --- Cylindrospermopsin --- Microcystin-LR --- mixture

Coastal Resources Economics and Ecosystem Valuation

Authors: ---
ISBN: 9783039280162 9783039280179 Year: Pages: 104 DOI: 10.3390/books978-3-03928-017-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The practical importance of economic valuation information can hardly be overstated. Coastal and marine resource policy planning and management benefit from complete information on the impact of policy decisions.

Advances in Polyhydroxyalkanoate (PHA) Production, Volume 2

Author:
ISBN: 9783039286409 / 9783039286416 Year: Pages: 202 DOI: 10.3390/books978-3-03928-641-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Biotechnology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Nowadays, we are witnessing highly dynamic research activities related to the intriguing field of biodegradable materials with plastic-like properties. These activities are stimulated by the strengthened public awareness of prevailing ecological issues connected to growing piles of plastic waste and increasing greenhouse gas emissions; this goes hand-in-hand with the ongoing depletion of fossil feedstocks, which are traditionally used to produce full carbon backbone polymers. Polyhydroxyalkanoate (PHA) biopolyesters, a family of plastic-like materials with versatile material properties, are increasing considered to be a future-oriented solution for diminishing these concerns. PHA production is based on renewable resources and occurs in a bio-mediated fashion through the action of living organisms. If accomplished in an optimized way, PHA production and the entire PHA lifecycle are embedded into nature´s closed cycles of carbon. Sustainable and efficient PHA production requires understanding and improvement of all the individual process steps. Holistic improvement of PHA production, applicable on an industrially relevant scale, calls for, inter alia, consolidated knowledge about the enzymatic and genetic particularities of PHA-accumulating organisms, an in-depth understanding of the kinetics of the bioprocess, the selection of appropriate inexpensive fermentation feedstocks, tailoring of PHA composition at the level of its monomeric constituents, optimized biotechnological engineering, and novel strategies for PHA recovery from biomass characterized by low energy and chemical requirements. This Special Issue represents a comprehensive compilation of articles in which these individual aspects have been addressed by globally recognized experts.

Keywords

polyhydroxyalkanoate (PHA), bioprocess design --- carbon dioxide --- cyanobacteria --- upstream processing --- Archaea --- bioeconomy --- biopolyester --- downstream processing --- extremophiles --- haloarchaea --- Haloferax --- halophiles --- polyhydroxyalkanoates --- salinity --- polyhydroxyalkanoates --- terpolymer --- P(3HB-co-3HV-co-4HB) --- Cupriavidus malaysiensis --- polyhydroxyalkanoates --- biomedicine --- biomaterials --- Poly(3-hydroxybutyrate) --- tissue engineering --- wound healing --- delivery system --- poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHVB) --- poly(3-hydroxybutyrate-co-4-hydroxybutyrate) --- bubble column bioreactor --- COMSOL --- microorganism --- PHB --- simulation --- polyhydroxyalkanoate --- PHA --- process analytical technologies --- PAT --- plant oil --- high-cell-density fed-batch --- photon density wave spectroscopy --- PDW --- Ralstonia eutropha --- Cupriavidus necator --- on-line --- in-line --- polyhydroxyalkanoates --- fed-batch --- productivity --- Pseudomonas --- bioreactor --- microaerophilic --- PHA --- viscosity --- non-Newtonian fluid --- fed-batch fermentation --- oxygen transfer --- Pseudomonas putida --- medium-chain-length polyhydroxyalkanoate (mcl-PHA) --- alginate --- biosurfactants --- biopolymer --- Pseudomonas --- blends --- film --- polyhydroxyalkanoates processing --- electrospinning --- additive manufacturing --- selective laser sintering --- fused deposition modeling --- computer-aided wet-spinning --- polyhydroxybutyrate --- tequila bagasse --- hydrolysate detoxification --- activated charcoal --- phenolic compounds --- biomedical application --- cyanobacteria --- feedstocks --- gaseous substrates --- haloarchaea --- high cell density cultivation --- in-line monitoring --- PHA composition --- PHA processing --- polyhydroxyalkanoate --- process engineering --- process simulation --- Pseudomonas sp. --- rheology --- terpolyester --- waste streams

Thioredoxin and Glutaredoxin Systems

Authors: ---
ISBN: 9783038978367 9783038978374 Year: Pages: 280 DOI: 10.3390/books978-3-03897-837-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue features recent data concerning thioredoxins and glutaredoxins from various biological systems, including bacteria, mammals, and plants. Four of the sixteen articles are review papers that deal with the regulation of development of the effect of hydrogen peroxide and the interactions between oxidants and reductants, the description of methionine sulfoxide reductases, detoxification enzymes that require thioredoxin or glutaredoxin, and the response of plants to cold stress, respectively. This is followed by eleven research articles that focus on a reductant of thioredoxin in bacteria, a thioredoxin reductase, and a variety of plant and bacterial thioredoxins, including the m, f, o, and h isoforms and their targets. Various parameters are studied, including genetic, structural, and physiological properties of these systems. The redox regulation of monodehydroascorbate reductase, aminolevulinic acid dehydratase, and cytosolic isocitrate dehydrogenase could have very important consequences in plant metabolism. Also, the properties of the mitochondrial o-type thioredoxins and their unexpected capacity to bind iron–sulfur center (ISC) structures open new developments concerning the redox mitochondrial function and possibly ISC assembly in mitochondria. The final paper discusses interesting biotechnological applications of thioredoxin for breadmaking.

Keywords

methionine --- methionine sulfoxide --- methionine sulfoxide reductase --- physiological function --- protein --- plant --- repair --- redox homeostasis --- signaling --- stress --- mitochondria --- thioredoxin --- iron–sulfur cluster --- redox regulation --- ALAD --- tetrapyrrole biosynthesis --- redox control --- thioredoxins --- posttranslational modification --- chlorophyll --- redox regulation --- thioredoxin --- ferredoxin-thioredoxin reductase --- chloroplast --- H2O2 --- redox signalling --- development --- regeneration --- adult stem cells --- metazoan --- cyanobacteria --- thioredoxin --- photosynthesis --- redox active site --- thioredoxin --- disulfide --- flavin --- NADPH --- X-ray crystallography --- SAXS --- methanoarchaea --- chilling stress --- cold temperature --- posttranslational modification --- regulation --- ROS --- thiol redox network --- thioredoxin --- thioredoxin --- Calvin-Benson cycle --- photosynthesis --- carbon fixation --- chloroplast --- macromolecular crystallography --- protein-protein recognition --- electrostatic surface --- Chlamydomonas reinhardtii --- thioredoxin --- glutaredoxin --- legume plant --- symbiosis --- redox homeostasis --- stress --- thioredoxin --- monodehydroascorbate reductase --- water stress --- protein oxidation --- antioxidants --- ascorbate --- glutathione --- wheat --- thioredoxin --- thioredoxin reductase --- baking --- redox --- dough rheology --- protein oxidation --- methionine oxidation --- methionine sulfoxide reductases --- oxidized protein repair --- ageing --- Chlamydomonas reinhardtii --- cysteine alkylation --- cysteine reactivity --- MALDI-TOF mass spectrometry --- thioredoxin --- X-ray crystallography --- Isocitrate dehydrogenase --- glutathionylation --- nitrosylation --- glutaredoxin --- Arabidopsis thaliana --- thioredoxins --- plastidial --- specificity --- function --- proteomic --- photosynthesis --- Calvin cycle --- n/a

Marine Natural Products and Obesity

Authors: ---
ISBN: 9783039211913 9783039211920 Year: Pages: 194 DOI: 10.3390/books978-3-03921-192-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Internal medicine
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Obesity and related co-morbidities are increasing worldwide and pose a serious health problem. Changes in lifestyle and diet would be the best remedies to fight obesity; however, many people will still rely on medical aid. Marine organisms have been prolific in the production of bioactive compounds for many diseases, e.g., cancer, and promise to be an excellent source for natural-derived molecules and novel nutraceuticals. Bioactive compounds with beneficial activities towards obesity have been described from diverse marine organism including marine algae, bacteria, sponges, fungi, crustaceans or fish. This Special Issue will highlight the progress in the following topics: Bioactive compounds for the treatment of obesity and obesity-related co-morbidities (diabetes, fatty liver, hyperlipidemia) from marine organisms; the isolation of novel compounds, the bioactivity screening of marine organisms and the elucidation of molecular mode of action of marine bioactive compounds.

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Narrow your search