Search results: Found 14

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
In Vivo Imaging in Pharmacological Research

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452378 Year: Pages: 222 DOI: 10.3389/978-2-88945-237-8 Language: English
Publisher: Frontiers Media SA
Subject: Therapeutics --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

The discovery and development of a biological active molecule with therapeutic properties is an ever increasing complex task, highly unpredictable at the early stages and marked, in the end, by high rates of failure. As a consequence, the overall process leading to the production of a successful drug is very costly. The improvement of the net outcome in drug discovery and development would require, amongst other important factors, a good understanding of the molecular events that characterize the disease or pathology in order to better identify likely targets of interest, to optimize the interaction of an active agent (small molecule or macromolecule of natural or synthetic origin) with those targets, and to facilitate the study of the pharmacokinetics, pharmacodynamics and toxicity of an active agent in suitable models and in human subjects. The objective of this Research Topic is to highlight new developments and applications of imaging techniques with the objective of performing pharmacological studies in vivo, in animal models and in humans. In the domain of drug discovery, the pharmacological and biomedical questions constitute the center of attention. In this sense, it is fundamental to keep in mind the strengths and limitations of each analytical or imaging technique. At the end, the judicious application of the technique with the aim of supporting the search for answers to manifold questions arising during a long and painstaking path provides a continuous role for imaging within the complex area of drug discovery and development.

The Chemistry of Imaging Probes

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455980 Year: Pages: 129 DOI: 10.3389/978-2-88945-598-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Over the past decades, the field of molecular imaging has been rapidly growing involving multiple disciplines such as medicine, biology, chemistry, pharmacology and biomedical engineering. Any molecular imaging procedure requires an imaging probe that is an agent used to visualize, characterize and quantify biological processes in living systems. Such a probe typically consists of an agent that usually produces signal for imaging purpose, a targeting moiety, and a linker connecting the targeting moiety and the signaling agent.Many challenging problems of molecular imaging can be addressed by exploiting the great possibilities offered by modern synthetic organic and coordination chemistry and the powerful procedures provided by conjugation chemistry. Thus, chemistry plays a decisive role in the development of this cutting-edge methodology.Currently, the diagnostic imaging modalities include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Ultrasound (US), Nuclear Imaging (PET, SPECT), Optical Imaging (OI) and Photoacoustic Imaging (PAI). Each of these imaging modalities has its own advantages and disadvantages, and therefore, a multimodal approach combining two techniques is often adopted to generate complementary anatomical and functional information of the disease. The basis for designing imaging probes for a given application is dictated by the chosen imaging modality, which in turn is dependent upon the concentration and localization profile (vascular, extracellular matrix, cell membrane, intracellular, near or at the cell nucleus) of the target molecule. The development of high-affinity ligands and their conjugation to the targeting vector is also one of the key steps for pursuing efficient molecular imaging probes. Other excellent reviews, text and monographs describe the principles of biomedical imaging, focusing on molecular biology or on the physics behind the techniques. This Research Topic aims to show how chemistry can offer molecular imaging the opportunity to express all its potential.

Branching and Rooting Out with a CT Scanner: The Why, the How, and the Outcomes, Present and Possibly Future

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197910 Year: Pages: 91 DOI: 10.3389/978-2-88919-791-0 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2017-02-03 17:04:57
License:

Loading...
Export citation

Choose an application

Abstract

Until recently, a majority of the applications of X-ray computed tomography (CT) scanning in plant sciences remained descriptive; some included a quantification of the plant materials when the root-soil isolation or branch-leaf separation was satisfactory; and a few involved the modeling of plant biology processes or the assessment of treatment or disease effects on plant biomass and structures during growth. In the last decade, repeated CT scanning of the same plants was reported in an increasing number of studies in which moderate doses of X-rays had been used. Besides the general objectives of Frontiers in Plant Science research topics, “Branching and Rooting Out with a CT Scanner” was proposed to meet specific objectives: (i) providing a non-technical update on knowledge about the application of CT scanning technology to plants, starting with the type of CT scanning data collected (CT images vs. CT numbers) and their processing in the graphical and numerical approaches; (ii) drawing the limits of the CT scanning approach, which because it is based on material density can distinguish materials with contrasting or moderately overlapping densities (e.g., branches vs. leaves, roots vs. non-organic soils) but not the others (e.g., roots vs. organic soils); (iii) explaining with a sufficient level of detail the main procedures used for graphical, quantitative and statistical analyses of plant CT scanning data, including fractal complexity measures and statistics appropriate for repeated plant CT scanning, in experiments where the research hypotheses are about biological processes such as light interception by canopies, root disease development and plant growth under stress conditions; (iv) comparing plant CT scanning with an alternative technology that applies to plants, such as the phenomics platforms which target leaf canopies; and (v) providing current and potential users of plant CT scanning with up-to-date information and exhaustive documentation, including clear perspectives and well-defined goals for the future, for them to be even more efficient or most efficient from start in their research work.

Phase-Contrast and Dark-Field Imaging

Author:
ISBN: 9783038972846 9783038972853 Year: Pages: 146 DOI: 10.3390/books978-3-03897-285-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Mathematics
Added to DOAB on : 2019-01-08 11:33:34
License:

Loading...
Export citation

Choose an application

Abstract

The intent of this Special Issue is to provide a framework with which scientists in several different disciplines, related to phase-contrast and dark-field imaging, can illustrate their ideas and results. The articles are reviews or very recent scientific reports; they address newcomers in the field, as well as experts and professors in fields of X-ray physics, electron, and phase-contrast X-ray imaging.

Discontinuous Fiber Composites

Author:
ISBN: 9783038974918 9783038974925 Year: Pages: 210 DOI: 10.3390/books978-3-03897-492-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-01-15 12:25:03
License:

Loading...
Export citation

Choose an application

Abstract

Discontinuous fiber-reinforced polymers have gained importance in the transportation industries due to their outstanding material properties, lower manufacturing costs and superior lightweight characteristics. One of the most attractive attributes of discontinuous fiber reinforced composites is the ease with which they can be manufactured in large numbers, using injection and compression molding processes.Typical processes involving discontinuous fiber reinforced thermoplastic composite materials include injection and compression molding processes as well as extrusion. Furthermore, the automotive and appliance industries also use thermosets reinforced with chopped fibers in the form of sheet molding compound and bulk molding compound, for compression and injection-compression molding processes, respectively.A big disadvantage of discontinuous fiber composites is that the configuration of the reinforcing fibers is significantly changed throughout production process, reflected in the form of fiber attrition, excessive fiber orientation, fiber jamming and fiber matrix separation. This process-induced variation of the microstructural fiber properties within the molded part introduces heterogeneity and anisotropies to the mechanical properties, which can limit the potential of discontinuous fiber reinforced composites for lightweight applications.The main aim of this Special Issue is to collect various investigations focused on the processing of discontinuous fiber reinforced composites and the effect processing has on fiber orientation, fiber length and fiber density distributions throughout the final part. Papers presenting investigations on the effect fiber configurations have on the mechanical properties of the final composite products and materials are welcome in the Special Issue. Researchers who are modeling and simulating processes involving discontinuous fiber composites as well as those performing experimental studies involving these composites are welcomed to submit papers. Authors are encouraged to present new models, constitutive laws and measuring and monitoring techniques to provide a complete framework on these groundbreaking materials and facilitate their use in different engineering applications.

Non-destructive Testing of Materials in Civil Engineering

Author:
ISBN: 9783039216901 9783039216918 Year: Pages: 448 DOI: 10.3390/books978-3-03921-691-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This book was proposed and organized as a means to present recent developments in the field of nondestructive testing of materials in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of nondestructive testing of different materials in civil engineering—from building materials to building structures. The current trend in the development of nondestructive testing of materials in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. From this point of view, interesting results with significance for building practices have been obtained

Keywords

non-destructive testing --- masonry structures --- strengthening --- ultrasonic tomography --- adhesion assessment --- autoclaved aerated concrete (AAC) --- compressive strength --- shape and size of specimen --- moisture of AAC --- ultrasonic testing --- gantry crane --- RMF technique --- civil engineering --- fibre-cement boards --- non-destructive testing --- acoustic emission --- degree of degradation --- thermovision --- active thermography --- thermal contrast --- defect detection --- location of inclusions --- non-destructive testing --- materials research --- building partition --- cement-based composites --- fiber cement boards --- durability --- ultrasound measurements --- spun concrete --- micro-computed tomography --- nanoindentation --- deconvolution --- mathematical morphology --- non-destructive evaluation --- structural damage --- natural frequency --- singular value truncation --- multiple feedbacks --- data noise --- NDT methods --- rebar location --- eddy-current method --- GPR method --- concrete --- concrete mix design --- concrete strength prediction --- data mining --- machine learning --- timber structures --- non-destructive methods --- ultrasonic wave --- stress wave --- drilling resistance --- X-ray micro-computed tomography --- waste brick dust --- adsorption --- lead --- cesium --- surface complexation --- precipitation --- solid-state NMR spectroscopy --- Lamb waves --- scanning laser vibrometry --- adhesive joints --- non-destructive testing --- damage detection --- excitation frequency --- nondestructive testing --- thermography --- monitoring of structures --- reinforced concrete chimney --- corrosion processes --- service life of a structure --- viscoelastic parameters --- creep test --- fatigue tests --- asphalt mixtures --- Burgers model --- four point bending beam --- pattern recognition --- acoustic emission --- Structural Health Monitoring --- brittle fracture --- diagnostics --- non-destructive testing --- reinforced concrete grandstand stadium --- vibration analysis --- crowd-induced excitation --- structural tuning --- concrete slabs and floorings --- horizontal casting --- compressive strength --- ultrasonic tests --- fibre-cement boards --- non-destructive testing --- acoustic emission --- artificial neural networks --- SEM --- non-destructive method --- damage --- mercury intrusion porosimetry --- X-ray computed tomography --- acoustic emission AE --- acoustic spectrum --- quasi brittle cement composites --- destruction process --- resistance measurement --- wood moisture sensing --- non-destructive testing --- moisture safety --- cellulose fibre cement boards --- microstructure --- nanoindentation --- SEM-EDS analysis --- temperature --- concrete elements --- concrete strength --- reinforced concrete tanks --- concrete corrosion --- sulphate corrosion --- ultrasound tests --- rebound hammer --- SilverSchmidt --- concrete --- compressive strength --- non-destructive testing --- non-destructive testing --- diagnostic --- acoustic methods --- ultrasound --- building materials --- defects

3D Printing of Metals

Author:
ISBN: 9783039213412 9783039213429 Year: Pages: 138 DOI: 10.3390/books978-3-03921-342-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

3D printing is rapidly emerging as a key manufacturing technique that is capable of serving a wide spectrum of applications, ranging from engineering to biomedical sectors. Its ability to form both simple and intricate shapes through computer-controlled graphics enables it to create a niche in the manufacturing sector. Key challenges remain, and a great deal of research is required to develop 3D printing technology for all classes of materials including polymers, metals, ceramics, and composites. In view of the growing importance of 3D manufacturing worldwide, this Special Issue aims to seek original articles to further assist in the development of this promising technology from both scientific and technological perspectives. Targeted reviews, including mini-reviews, are also welcome, as they play a crucial role in educating students and young researchers.

Biomaterials for Bone Tissue Engineering

Author:
ISBN: 9783039289653 / 9783039289660 Year: Pages: 244 DOI: 10.3390/books978-3-03928-966-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Bone tissue engineering aims to develop artificial bone substitutes that partially or totally restore the natural regeneration capability of bone tissue lost under circumstances of injury, significant defects, or diseases such as osteoporosis. In this context, biomaterials are the keystone of the methodology. Biomaterials for bone tissue engineering have evolved from biocompatible materials that mimic the physical and chemical environment of bone tissue to a new generation of materials that actively interacts with the physiological environment, accelerating bone tissue growth. Mathematical modelling and simulation are important tools in the overall methodology. This book presents an overview of the current investigations and recent contributions in the field of bone tissue engineering. It includes several successful examples of multidisciplinary collaboration in this transversal area of research. The book is intended for students, researchers, and professionals of a number of disciplines, such as engineering, mathematics, physics, chemistry, biomedicine, biology, and veterinary. The book is composed of an editorial section and 16 original research papers authored by leading researchers of this discipline from different laboratories across the world

Keywords

Pelvis --- Bone tumor --- 3D-printed implant --- Fixation design --- von Mises stress --- dental implants --- osseointegration --- resonance frequency analysis --- biomaterials --- titanium --- powder metallurgy --- loose sintering --- finite element method --- mechanical behaviour --- bone tissue regeneration --- computed tomography --- Xenografts --- stem cell --- cartilage --- finite element --- finite-element simulation --- electric stimulation --- bone regeneration --- computational modelling --- electrically active implants --- bioelectromagnetism --- critical size defect --- maxillofacial --- minipig --- oxygen delivery --- optimization --- mass transfer --- transport --- bone tissue engineering --- computational fluid dynamics --- Lattice Boltzmann method --- scaffold design --- culturing protocol --- Lagrangian scalar tracking --- cortical bone --- damage --- finite elements --- numerical results --- adipogenesis --- bone marrow --- MSCs --- prediction marker --- bone tissue --- elastoplasticity --- finite element method --- fracture risk --- osteoporosis --- trabeculae --- trabecular bone score --- vertebra --- biomechanics --- finite element modelling --- pelvis --- bone adaptation --- musculoskeletal modelling --- bone tissue engineering --- biomaterials --- computational mechanobiology --- numerical methods in bioengineering --- Ti6Al4V scaffolds --- triply periodic minimal surfaces --- selective laser melting --- additive manufacturing --- biomaterial applications --- finite element analysis --- spark plasma sintering --- wollastonite --- human dental pulp stem cells --- substrate-mediated electrical stimulation --- direct current electric field --- osteo-differentiation --- bone morphogenesis proteins --- cortical bone --- digital image correlation --- multiscale analysis --- micromechanics --- computational mechanics --- cone beam computed tomography --- automatic segmentation --- sliding window --- 3D virtual surgical plan --- Otsu’s method --- n/a

Carbon Fibers and Their Composite Materials

Author:
ISBN: 9783039211029 9783039211036 Year: Pages: 186 DOI: 10.3390/books978-3-03921-103-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Carbon fiber is an oft-referenced material that serves as a means to remove mass from large transport infrastructure. Carbon fiber composites, typically plastics reinforced with the carbon fibers, are key materials in the 21st century and have already had a significant impact on reducing CO2 emissions. Though, as with any composite material, the interface where each component meets, in this case the fiber and plastic, is critical to the overall performance.

Advanced Approaches Applied to Materials Development and Design Predictions

Authors: --- --- --- --- et al.
ISBN: 9783039284122 9783039284139 Year: Pages: 164 DOI: 10.3390/books978-3-03928-413-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This thematic issue on advanced simulation tools applied to materials development and design predictions gathers selected extended papers related to power generation systems, presented at the XIX International Colloquium on Mechanical Fatigue of Metals (ICMFM XIX), organized at University of Porto, Portugal, in 2018. In this issue, the limits of the current generation of materials are explored, which are continuously being reached according to the frontier of hostile environments, whether in the aerospace, nuclear, or petrochemistry industry, or in the design of gas turbines where efficiency of energy production and transformation demands increased temperatures and pressures. Thus, advanced methods and applications for theoretical, numerical, and experimental contributions that address these issues on failure mechanism modeling and simulation of materials are covered. As the Guest Editors, we would like to thank all the authors who submitted papers to this Special Issue. All the papers published were peer-reviewed by experts in the field whose comments helped to improve the quality of the edition. We also would like to thank the Editorial Board of Materials for their assistance in managing this Special Issue.

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (11)

Frontiers Media SA (3)


License

CC by-nc-nd (11)

CC by (3)


Language

english (13)

eng (1)


Year
From To Submit

2020 (3)

2019 (8)

2018 (1)

2017 (1)

2016 (1)