Search results: Found 6

Listing 1 - 6 of 6
Sort by
Non-destructive Testing of Materials in Civil Engineering

Author:
ISBN: 9783039216901 9783039216918 Year: Pages: 448 DOI: 10.3390/books978-3-03921-691-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This book was proposed and organized as a means to present recent developments in the field of nondestructive testing of materials in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of nondestructive testing of different materials in civil engineering—from building materials to building structures. The current trend in the development of nondestructive testing of materials in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. From this point of view, interesting results with significance for building practices have been obtained

Keywords

non-destructive testing --- masonry structures --- strengthening --- ultrasonic tomography --- adhesion assessment --- autoclaved aerated concrete (AAC) --- compressive strength --- shape and size of specimen --- moisture of AAC --- ultrasonic testing --- gantry crane --- RMF technique --- civil engineering --- fibre-cement boards --- non-destructive testing --- acoustic emission --- degree of degradation --- thermovision --- active thermography --- thermal contrast --- defect detection --- location of inclusions --- non-destructive testing --- materials research --- building partition --- cement-based composites --- fiber cement boards --- durability --- ultrasound measurements --- spun concrete --- micro-computed tomography --- nanoindentation --- deconvolution --- mathematical morphology --- non-destructive evaluation --- structural damage --- natural frequency --- singular value truncation --- multiple feedbacks --- data noise --- NDT methods --- rebar location --- eddy-current method --- GPR method --- concrete --- concrete mix design --- concrete strength prediction --- data mining --- machine learning --- timber structures --- non-destructive methods --- ultrasonic wave --- stress wave --- drilling resistance --- X-ray micro-computed tomography --- waste brick dust --- adsorption --- lead --- cesium --- surface complexation --- precipitation --- solid-state NMR spectroscopy --- Lamb waves --- scanning laser vibrometry --- adhesive joints --- non-destructive testing --- damage detection --- excitation frequency --- nondestructive testing --- thermography --- monitoring of structures --- reinforced concrete chimney --- corrosion processes --- service life of a structure --- viscoelastic parameters --- creep test --- fatigue tests --- asphalt mixtures --- Burgers model --- four point bending beam --- pattern recognition --- acoustic emission --- Structural Health Monitoring --- brittle fracture --- diagnostics --- non-destructive testing --- reinforced concrete grandstand stadium --- vibration analysis --- crowd-induced excitation --- structural tuning --- concrete slabs and floorings --- horizontal casting --- compressive strength --- ultrasonic tests --- fibre-cement boards --- non-destructive testing --- acoustic emission --- artificial neural networks --- SEM --- non-destructive method --- damage --- mercury intrusion porosimetry --- X-ray computed tomography --- acoustic emission AE --- acoustic spectrum --- quasi brittle cement composites --- destruction process --- resistance measurement --- wood moisture sensing --- non-destructive testing --- moisture safety --- cellulose fibre cement boards --- microstructure --- nanoindentation --- SEM-EDS analysis --- temperature --- concrete elements --- concrete strength --- reinforced concrete tanks --- concrete corrosion --- sulphate corrosion --- ultrasound tests --- rebound hammer --- SilverSchmidt --- concrete --- compressive strength --- non-destructive testing --- non-destructive testing --- diagnostic --- acoustic methods --- ultrasound --- building materials --- defects

New Trends in Recycled Aggregate Concrete

Authors: --- ---
ISBN: 9783039211401 9783039211418 Year: Pages: 280 DOI: 10.3390/books978-3-03921-141-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book is the result of a Special Issue published in Applied Sciences, entitled “New Trends in Recycled Aggregate Concrete"". It identifies emerging research areas within the field of recycled aggregate concrete and contributes to the increased use of this eco-efficient material.Its contents are organised in the following sections: Upscaling the use of recycled aggregate concrete in structural design; Large scale applications of recycled aggregate concrete; Long-term behaviour of recycled aggregate concrete; Performance of recycled aggregate concrete in very aggressive environments; Reliability of recycled aggregate concrete structures; Life cycle assessment of recycled aggregate concrete; New applications of recycled aggregate concrete.

Keywords

reactive power concrete --- shrinkage --- creep --- steel fibre --- model --- compressive strength --- models --- geological nature of aggregates --- quality of aggregates --- concrete --- recycled aggregates --- seismic load --- strain rate --- fiber-reinforced concrete --- dynamic mechanical property --- recycled aggregate quality --- bond strength --- shear behavior --- aggregate interlock mechanism --- size effect --- ready-mixed concrete --- recycled concrete aggregates --- returned concrete --- concrete sludge fines --- soil stabilization --- recycled aggregate --- recycled aggregate concrete --- artificial neural networks --- aggregate characteristic --- input variable --- recycled concrete --- aggregate --- mixture proportioning --- flexural behavior --- recycling --- heavyweight waste glass --- cyclic load --- reinforced concrete member --- recycled aggregate concrete (RAC) --- steel reinforced recycled aggregate concrete (SRRAC) --- elevated temperature --- residual properties --- recycled coarse aggregate concrete --- nylon fiber --- mechanical properties --- permeability --- microstructure --- foam concrete --- cellular concrete --- ceramic foam --- modulus --- crushing --- energy absorbing --- CT --- foam structure --- foam stability --- recycled aggregate --- concrete --- life cycle assessment --- environmental impact --- recycled concrete aggregate --- crumb rubber --- crushed glass --- compressive strength --- tensile splitting strength --- water absorption --- concrete --- aggregates --- fly-ash --- silica fume --- blast-furnace slag --- mechanical properties --- water absorption --- reinforced concrete --- recycled aggregate concrete --- columns --- seismic performance --- numerical analysis --- variable sensitivity --- recycled aggregate --- concrete --- construction waste --- mechanical characteristics --- durable characteristics --- n/a

Recent Trends in Phosphate Mining and Beneficiation and Related Waste Management

Authors: ---
ISBN: 9783039281725 9783039281732 Year: Pages: 172 DOI: 10.3390/books978-3-03928-173-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mining and Metallurgy
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

The extraction of apatite minerals is becoming more and more crucial with the depletion of high-grade ores. At the same time, many streams of waste are continuously being produced by the phosphate industry, including calcareous and siliceous waste rocks, clayey sludge and phosphogypsum. These waste products are produced in huge volumes reaching a ratio of between 5 to 10 tons of waste per each ton of concentrated phosphate. The management of these waste products is becoming a real issue in terms of growing public awareness and environmental and financial aspects. In addition, phosphate ores are known to contain other critical raw materials (CRM) such as rare earth elements and uranium. The recovery of these vital elements from phosphate waste may help to develop the needs of the green energy of the future and contribute to the achievement of the sustainable development goals. In this Special Issue, insights related to the following aspects were studied: phosphate extraction and beneficiation, novel phosphate ores, the fine characterization of phosphate ores and waste, phosphoric acid production, critical raw material (CRM) recovery from phosphate ores and waste, reprocessing of phosphate wastes and finally the valorization and reuse of phosphate waste and phosphogypsum.

Ironmaking and Steelmaking

Authors: ---
ISBN: 9783039213290 9783039213306 Year: Pages: 464 DOI: 10.3390/books978-3-03921-330-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Steel is a critical material in our societies and will remain an important one for a long time into the future. In the last two decades, the world steel industry has gone through drastic changes and this is predicted to continue in the future. The Asian countries (e.g. China, India) have been dominant in the production of steel creating global over-capacity, while the steel industry in the developed countries have made tremendous efforts to reinforce its global leadership in process technology and product development, and remain sustainable and competitive. The global steel industry is also facing various grand challenges in strict environmental regulation, new energy and materials sources, and ever-increasing customer requirements for high quality steel products, which has been addressed accordingly by the global iron and steel community. This Special Issue, “Ironmaking and Steelmaking”, released by the journal Metals, published 33 high quality articles from the international iron and steel community, covering the state-of-the-art of the ironmaking and steelmaking processes. This includes fundamental understanding, experimental investigation, pilot plant trials, industrial applications and big data utilization in the improvement and optimization of existing processes, and research and development in transformative technologies. It is hoped that the creation of this special issue as a scientific platform will help drive the iron and steel community to build a sustainable steel industry.

Keywords

ironmaking --- microwaves --- carbothermal reduction --- iron oxides --- emission spectrum --- ore-carbon briquette --- CO–CO2 atmosphere --- simulation --- re-oxidation --- reduction --- electroslag cladding --- high speed steel --- ductile cast iron --- composite roll --- bonding interface --- high-phosphorus iron ore --- fluorapatite --- carbothermal reduction --- vaporization dephosphorization --- iron ore pellets --- compressive strength (CS) --- prediction model --- artificial neural network --- principal component analysis --- crystallization behaviors --- crystallization rate --- anosovite crystals --- silicate crystals --- titanium slag --- blast furnace --- copper stave --- hydrogen attack --- slag crust --- heat-affected zone --- high heat input welding --- Ca deoxidation --- inclusion control --- intragranular acicular ferrite --- concentrate --- iron ore --- agglomerate --- structure --- phase analysis --- Mg deoxidation --- inclusions --- Al addition --- high-heat-input welding --- heat-affected zone --- toughness --- shot peening --- Barkhausen noise --- crystallite size --- carbon composite pellet --- direct reduction --- shrinkage --- kinetics --- rotary hearth furnace --- hydrogen plasma --- smelting reduction --- HPSR --- iron oxide --- plasma arc --- ionization degree --- sulfur distribution ratio --- liquid area --- carbon-saturated iron --- phosphate capacity --- sulfide capacity --- phosphorus distribution ratio --- sulfur distribution ratio --- evaluation of coupling relationship --- secondary refining process, CaO–based slags --- iron sulfate --- TG analysis --- thermal treatment --- iron oxide --- kinetics --- activation energy --- high-aluminum iron ore --- synergistic reduction --- high-manganese iron ore --- hercynite --- fayalite --- flow velocity --- casting speed --- gas flow rate --- flow pattern --- continuous casting --- Cr recovery --- self-reduction briquette --- reaction mechanism --- mold flux --- low fluorine --- internal crack --- surface roughness --- slag film --- vanadium titano-magnetite --- gas-based reduction --- carbon monoxide --- hydrogen --- and nitrogen --- kinetics --- pellet size --- liquid steel --- non-contact measurement --- oxides --- steel-making --- blast furnace --- solid flow --- cold experiment --- direct element method --- Wilcox–Swailes coefficient --- viscosity --- BaO --- CaO/Al2O3 ratio --- modified NPL model --- ultrafine particles exposure --- steelmaking factory --- chemical composition --- devolatilization --- torrefied biomass --- bio-coal --- volatile matter --- iso-conversional method --- Al-TRIP steel --- surface depression --- cracks --- non-metallic inclusion --- mold flux --- reactivity --- hot metal pre-treatment --- desiliconisation --- dephosphorisation --- solid and gaseous oxygen --- fork --- flat steel --- inclusions --- 33MnCrTiB --- slag --- carbon dioxide --- injection --- blast furnace --- converter --- combustion --- oxygen steelmaking --- refining kinetics --- slag formation --- penetration theory --- oxygen blast furnace --- COREX --- static process model --- integrated steel plant --- material flow --- energy consumption --- CO2 emissions --- oil-pipeline steel --- Ca-treatment --- non-metallic inclusions --- electrolytic extraction --- corrosion --- n/a

Fluid Flow in Fractured Porous Media

Authors: ---
ISBN: 9783039214235 9783039214242 Year: Volume: 1 Pages: 578 DOI: 10.3390/books978-3-03921-424-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

scanning electron microscope (SEM) images --- permeability --- high temperature --- Darcy’s law --- confining pressures --- chemical grouts --- grain size of sand --- initial water contained in sand --- grouted sand --- macroscopic mechanical behaviors --- microstructure characteristics --- ductile failure --- gas concentration --- gob-side entry retaining (GER) --- limestone roof --- roof-cutting resistance --- roadside backfill body (RBB) --- solid backfill coal mining --- goaf --- water soaked height --- loose gangue backfill material --- deformation --- crushing ratio --- fracture grouting --- cement–silicate grout --- geophysical prospecting --- seepage --- Yellow River Embankment --- contiguous seams --- water-dripping roadway --- roadway deformation --- bolt support --- pervious concrete --- permeability coefficient --- porosity --- pore distribution characteristics --- strength --- soil–structure interface --- internal erosion --- critical hydraulic gradient --- orthogonal tests --- Pseudo Steady-State (PPS) constant --- finite-conductivity fracture --- conductivity-influence function --- normalized conductivity-influence function --- circular closed reservoir --- glutenite --- gravel --- hydraulic fracture --- numerical simulation --- propagation --- glauberite cavern for storing oil &amp --- gas --- thermal-hydrological-chemical interactions --- temperature --- brine concentration --- microstructure --- micro-CT --- damage --- cyclic heating and cooling --- physical and mechanical parameters --- failure mode --- acoustic emission --- anisotropy --- bedding plane orientation --- coal --- gas --- adsorption–desorption --- laboratory experiment --- pore pressure --- hydro-mechanical coupling --- fracture closure --- constitutive model --- effective stress --- debris flow --- dynamic characteristics --- numerical analysis --- debris-resisting barriers --- coal measures sandstone --- creep characteristics --- seepage pressure --- seepage-creep --- microscopic morphology --- Darcy flow --- heterogeneity --- numerical manifold method --- high-order --- refraction law --- hydraulic fracture network --- cohesive element method --- coal seams --- fracture propagation --- discontinuous natural fracture --- secondary fracture --- fault water inrush --- coupled THM model --- nonlinear flow in fractured porous media --- numerical model --- warning levels of fault water inrush --- bentonite-sand mixtures --- differential settlement --- deformation --- hydraulic conductivity --- crack --- geogrid --- enhanced permeability --- deviatoric stress --- mechanical behavior transition --- CH4 seepage --- volumetric strain --- strain-based percolation model --- rock-soil mechanics --- soft filling medium --- segmented grouting --- split grouting --- model experiment --- reinforcement mechanism --- longwall mining --- gob behaviors --- stress relief --- permeability --- gas drainage --- hard and thick magmatic rocks --- orthogonal ratio test --- similar simulation --- fracture --- bed separation --- disaster-causing mechanism --- artificial joint rock --- shear-flow coupled test --- hydraulic aperture --- roughness --- seepage pressure --- mixing --- conservative solute --- fractal --- roughness --- fracture --- transversely isotropic rocks --- failure mechanism --- particle flow modeling --- interface --- n/a --- fractured porous rock mass --- grouting experiment --- visualization system --- flow law --- layered progressive grouting --- sandstone and mudstone particles --- rheological deformation --- segmented rheological model --- rheological limit strain --- rheological test --- water-rock interaction --- dry-wet cycles --- slope stability --- laboratory experiment --- mechanical properties --- Xinjiang --- land reclamation --- management period --- soil particle size --- fluid flow in reclaimed soil --- effluents --- soil properties --- cohesive soils --- contamination --- time variation --- stabilization --- mixer --- viscoelastic fluid --- pore structure --- orthogonal test --- fluid–solid coupling theory --- similar-material --- regression equation --- optimum proportioning --- hydraulic fracturing --- gas fracturing --- oriented perforation --- fracture propagation --- damage mechanics --- fluid viscosity --- CO2 flooding --- supercritical CO2 --- CO2 geological storage --- tight sandstone gas reservoirs --- enhanced gas recovery --- flotation --- coal particle --- collision angle --- initial settlement position --- particle velocity --- adhesion efficiency --- green mining --- paste-like slurry --- XRD --- intelligent torque rheometer --- on-site monitoring --- cyclic wetting-drying --- deterioration --- sandstone --- mudstone --- elastic modulus --- uniaxial compressive strength --- permeability characteristics --- grading broken gangue --- compressive stress --- compression deformation --- mine shaft --- alternate strata --- surrounding rock --- shaft lining --- relief excavation --- consolidation process --- unsaturated soil --- semi-analytical solution --- impeded drainage boundary --- excess pore-pressures --- coalbed methane (CBM) --- soft coal masses --- pore structure --- fractal pore characteristics --- hydraulic fractures --- PPCZ --- multitude parameters --- propagation pattern --- stress interference --- naturally fracture --- filtration effects --- grout penetration --- unified pipe-network method --- two-phase flow --- fractured porous medium --- new cementitious material --- cement-based paste discharge --- XRD --- TG/DTG --- SEM --- MIP --- mechanical behaviors --- rock fracture --- shear-flow coupled test --- constant normal stiffness conditions --- transmissivity --- hydraulic aperture --- water inrush prevention --- backfill mining --- strata movement --- ground pressure --- floor failure depth --- water–rock interaction --- degradation mechanism --- mixed mode fracture resistance --- fracture criteria --- T-stress --- hydro-power --- high-steep slope --- fractured rock --- permeability --- seepage control --- gas-bearing coal --- electrical potential --- charge separation --- gas adsorption --- damage evolution --- Unsaturation --- chloride --- concrete --- coupling model --- numerical calculation --- debris flow --- forecasting --- rainfall-unstable soil coupling mechanism(R-USCM) --- scoops3D --- Jiaohe --- non-aqueous phase liquid --- finite element method --- two-phase flow --- mixed-form formulation --- FLAC --- pore structure --- movable fluid --- tight sandstones --- Ordos Basin --- tectonically deformed coal --- coal and gas outburst --- coal-like material --- mechanical properties --- deformation feature --- adsorption/desorption properties --- minerals --- mechanical properties --- uniaxial compressive strength --- crack distribution characteristics --- discrete element method --- lignite --- nitric acid modification --- pore structure --- surface characteristics --- adsorption performance --- n/a

Fluid Flow in Fractured Porous Media

Authors: ---
ISBN: 9783039214730 9783039214747 Year: Volume: 2 Pages: 492 DOI: 10.3390/books978-3-03921-474-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

scanning electron microscope (SEM) images --- permeability --- high temperature --- Darcy’s law --- confining pressures --- chemical grouts --- grain size of sand --- initial water contained in sand --- grouted sand --- macroscopic mechanical behaviors --- microstructure characteristics --- ductile failure --- gas concentration --- gob-side entry retaining (GER) --- limestone roof --- roof-cutting resistance --- roadside backfill body (RBB) --- solid backfill coal mining --- goaf --- water soaked height --- loose gangue backfill material --- deformation --- crushing ratio --- fracture grouting --- cement–silicate grout --- geophysical prospecting --- seepage --- Yellow River Embankment --- contiguous seams --- water-dripping roadway --- roadway deformation --- bolt support --- pervious concrete --- permeability coefficient --- porosity --- pore distribution characteristics --- strength --- soil–structure interface --- internal erosion --- critical hydraulic gradient --- orthogonal tests --- Pseudo Steady-State (PPS) constant --- finite-conductivity fracture --- conductivity-influence function --- normalized conductivity-influence function --- circular closed reservoir --- glutenite --- gravel --- hydraulic fracture --- numerical simulation --- propagation --- glauberite cavern for storing oil &amp --- gas --- thermal-hydrological-chemical interactions --- temperature --- brine concentration --- microstructure --- micro-CT --- damage --- cyclic heating and cooling --- physical and mechanical parameters --- failure mode --- acoustic emission --- anisotropy --- bedding plane orientation --- coal --- gas --- adsorption–desorption --- laboratory experiment --- pore pressure --- hydro-mechanical coupling --- fracture closure --- constitutive model --- effective stress --- debris flow --- dynamic characteristics --- numerical analysis --- debris-resisting barriers --- coal measures sandstone --- creep characteristics --- seepage pressure --- seepage-creep --- microscopic morphology --- Darcy flow --- heterogeneity --- numerical manifold method --- high-order --- refraction law --- hydraulic fracture network --- cohesive element method --- coal seams --- fracture propagation --- discontinuous natural fracture --- secondary fracture --- fault water inrush --- coupled THM model --- nonlinear flow in fractured porous media --- numerical model --- warning levels of fault water inrush --- bentonite-sand mixtures --- differential settlement --- deformation --- hydraulic conductivity --- crack --- geogrid --- enhanced permeability --- deviatoric stress --- mechanical behavior transition --- CH4 seepage --- volumetric strain --- strain-based percolation model --- rock-soil mechanics --- soft filling medium --- segmented grouting --- split grouting --- model experiment --- reinforcement mechanism --- longwall mining --- gob behaviors --- stress relief --- permeability --- gas drainage --- hard and thick magmatic rocks --- orthogonal ratio test --- similar simulation --- fracture --- bed separation --- disaster-causing mechanism --- artificial joint rock --- shear-flow coupled test --- hydraulic aperture --- roughness --- seepage pressure --- mixing --- conservative solute --- fractal --- roughness --- fracture --- transversely isotropic rocks --- failure mechanism --- particle flow modeling --- interface --- n/a --- fractured porous rock mass --- grouting experiment --- visualization system --- flow law --- layered progressive grouting --- sandstone and mudstone particles --- rheological deformation --- segmented rheological model --- rheological limit strain --- rheological test --- water-rock interaction --- dry-wet cycles --- slope stability --- laboratory experiment --- mechanical properties --- Xinjiang --- land reclamation --- management period --- soil particle size --- fluid flow in reclaimed soil --- effluents --- soil properties --- cohesive soils --- contamination --- time variation --- stabilization --- mixer --- viscoelastic fluid --- pore structure --- orthogonal test --- fluid–solid coupling theory --- similar-material --- regression equation --- optimum proportioning --- hydraulic fracturing --- gas fracturing --- oriented perforation --- fracture propagation --- damage mechanics --- fluid viscosity --- CO2 flooding --- supercritical CO2 --- CO2 geological storage --- tight sandstone gas reservoirs --- enhanced gas recovery --- flotation --- coal particle --- collision angle --- initial settlement position --- particle velocity --- adhesion efficiency --- green mining --- paste-like slurry --- XRD --- intelligent torque rheometer --- on-site monitoring --- cyclic wetting-drying --- deterioration --- sandstone --- mudstone --- elastic modulus --- uniaxial compressive strength --- permeability characteristics --- grading broken gangue --- compressive stress --- compression deformation --- mine shaft --- alternate strata --- surrounding rock --- shaft lining --- relief excavation --- consolidation process --- unsaturated soil --- semi-analytical solution --- impeded drainage boundary --- excess pore-pressures --- coalbed methane (CBM) --- soft coal masses --- pore structure --- fractal pore characteristics --- hydraulic fractures --- PPCZ --- multitude parameters --- propagation pattern --- stress interference --- naturally fracture --- filtration effects --- grout penetration --- unified pipe-network method --- two-phase flow --- fractured porous medium --- new cementitious material --- cement-based paste discharge --- XRD --- TG/DTG --- SEM --- MIP --- mechanical behaviors --- rock fracture --- shear-flow coupled test --- constant normal stiffness conditions --- transmissivity --- hydraulic aperture --- water inrush prevention --- backfill mining --- strata movement --- ground pressure --- floor failure depth --- water–rock interaction --- degradation mechanism --- mixed mode fracture resistance --- fracture criteria --- T-stress --- hydro-power --- high-steep slope --- fractured rock --- permeability --- seepage control --- gas-bearing coal --- electrical potential --- charge separation --- gas adsorption --- damage evolution --- Unsaturation --- chloride --- concrete --- coupling model --- numerical calculation --- debris flow --- forecasting --- rainfall-unstable soil coupling mechanism(R-USCM) --- scoops3D --- Jiaohe --- non-aqueous phase liquid --- finite element method --- two-phase flow --- mixed-form formulation --- FLAC --- pore structure --- movable fluid --- tight sandstones --- Ordos Basin --- tectonically deformed coal --- coal and gas outburst --- coal-like material --- mechanical properties --- deformation feature --- adsorption/desorption properties --- minerals --- mechanical properties --- uniaxial compressive strength --- crack distribution characteristics --- discrete element method --- lignite --- nitric acid modification --- pore structure --- surface characteristics --- adsorption performance --- n/a

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by-nc-nd (6)


Language

english (6)


Year
From To Submit

2020 (1)

2019 (5)