Search results: Found 22

Listing 1 - 10 of 22 << page
of 3
>>
Sort by
Mineral Matter and Trace Elements in Coal

Authors: --- ---
ISBN: 9783038426226 9783038426233 Year: Pages: 382 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Geography
Added to DOAB on : 2018-01-10 12:56:06
License:

Loading...
Export citation

Choose an application

Abstract

Minerals are very significant components of coal from both academic and practical perspectives. Minerals may react when the coal is burned, either forming an ash residue, or, in many cases, releasing volatile components, or being needed to be removed as slag from the blast furnace during metallurgical processing. Minerals in coal can also be a source of unwanted abrasion, stickiness, corrosion, or pollution associated with coal handling and use. Minerals in coal, in some cases, are major carriers of valuable metals, such as Ga, Al, and rare earth elements, and these coals with highly-evaluated valuable metals have the potential to be raw sources for industry use. From the genetic point of view, the minerals in coal are products of the processes associated with peat accumulation and rank advance, as well as other aspects of epigenetic processes, and, thus, the minerals in coal can provide information on the depositional conditions and geologic history of individual coal beds, coal-bearing sequences, and regional tectonic evolution. This Special Issue, “Minerals in Coal”, focuses on providing an up-to-date series of papers, covering research and technological developments in the nature, origin, and significance of the minerals in coal, and productions derived from combustion and gasification.

Disability in industrial Britain:

Authors: --- --- ---
ISBN: 9781526124326 9781526124319 Year: Pages: 288 Language: English
Publisher: Manchester University Press Grant: Wellcome Trust - 095948/Z/11/Z
Subject: Medicine (General) --- Social Sciences --- History
Added to DOAB on : 2020-01-08 11:21:03
License:

Loading...
Export citation

Choose an application

Abstract

Coalmining was a notoriously dangerous industry and many of its workers experienced injury and disease. However, the experiences of the many disabled people within Britain’s most dangerous industry have gone largely unrecognised by historians. This book examines the British coal industry through the lens of disability, using an interdisciplinary approach to examine the lives of disabled miners and their families.
The book considers the coal industry at a time when it was one of Britain’s most important industries, and follows it through a period of growth up to the First World War, through strikes, depression and wartime, and into an era of decline. During this time, the statutory provision for disabled people changed considerably, most notably with the first programme of state compensation for workplace injury. And yet disabled people remained a constant presence in the industry as many disabled miners continued their jobs or took up ‘light work’. The burgeoning coalfields literature used images of disability on a frequent basis and disabled characters were used to represent the human toll of the industry.
A diverse range of sources are used to examine the economic, social, political and cultural impact of disability in the coal industry, looking beyond formal coal company and union records to include autobiographies, novels and oral testimony. It argues that, far from being excluded entirely from British industry, disability and disabled people were central to its development. The book will appeal to students and academics interested in disability history, disability studies, social and cultural history, and representations of disability in literature.

Keywords

Injury --- Impairment --- Disability --- Coal industry

Burning Up

Author:
ISBN: 9780745335629 9781786803122 9781786803139 Year: Language: English
Publisher: Pluto Press Grant: Knowledge Unlatched - 102237
Subject: Environmental Sciences
Added to DOAB on : 2019-02-05 09:51:01
License:

Loading...
Export citation

Choose an application

Abstract

Coal, gas and oil have been capitalism's main fuels since the industrial revolution. And yet, of all the fossil fuels ever consumed, more than half were burned in the last 50 years. Most alarming of all, fossil fuel consumption has grown fastest in the last three decades, since scientists confirmed that it is the main cause of potentially devastating global warming. In Burning Up, Simon Pirani recounts the history of fossil fuels' relentless rise since the mid twentieth century. Dispelling explanations foregrounding Western consumerism, and arguments that population growth is the main problem, Pirani shows how fossil fuels are consumed through technological, social and economic systems, and that these systems must change. This is a major contribution to understanding the greatest crisis of our time.

Chapter 19 Concentrated solar energy driven multi-generation systems based on the organic Rankine cycle technology (Book chapter)

Authors: ---
ISBN: 9780367198428 Year: Pages: 18 Language: English
Publisher: Taylor & Francis
Subject: Environmental Technology --- Biology --- Agriculture (General)
Added to DOAB on : 2020-06-12 23:58:03
License:

Loading...
Export citation

Choose an application

Abstract

The use of renewable energy sources for multi-generation plants (plants with multiple products, e.g., heat, power, cooling, fresh water) is beneficial to mitigating climate change and to achieving sustainable development. Concentrated solar power plants take advantage of producing heat that can be used for power generation, thermal energy driven refrigeration, desalination, and other heating purposes. Moreover, concentrated solar power plants combined with thermal energy storage provide a cost-effective solution for long-term storage and solve the mismatch problem between supply and demand. For small to medium-scale applications (a few kWe to a few MWe), organic Rankine cycle power systems have been demonstrated to be efficient solutions for multi-generation plants. In this chapter, different concentrated solar power technologies for small to medium-scale applications are reviewed, and multi-generation systems based on the organic Rankine cycle technology are presented. Furthermore, the technical and economic viabilities of using concentrated solar energy powered organic Rankine cycle plants for multi-generation are discussed. Issues related to the system design and integration with different systems (e.g., vapor absorption system for cooling, multi-effect desalination for fresh water generation, etc.) are also addressed.

Sustainability of Fossil Fuels

Author:
ISBN: 9783039212194 9783039212200 Year: Pages: 284 DOI: 10.3390/books978-3-03921-220-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The energy and fuel industries represent an extensive field for the development and implementation of solutions aimed at improving the technological, environmental, and economic performance of technological cycles. In recent years, the issues of ecology and energy security have become especially important. Energy is firmly connected with all spheres of human economic life but, unfortunately, it also has an extremely negative (often fatal) effect on the environment and public health. Depletion of energy resources, the complexity of their extraction, and transportation are also problems of a global scale. Therefore, it is especially important nowadays to try to take care of nature and think about the resources that are necessary for future generations. For scientific teams in different countries, the development of sustainable and safe technologies for the use of fuels in the energy sector will be a challenge in the coming decades

Keywords

coal --- slurry fuel --- combustion --- forest fuels --- biomass --- anthropogenic emission concentration --- municipal solid waste --- coal processing waste --- oil refining waste --- waste management --- composite fuel --- energy production --- fuel activation --- waste-derived fuel --- coal-water slurry --- laser pulse --- syngas --- aerosol --- two-component droplet --- heating --- evaporation --- explosive breakup --- disintegration --- droplet holder material --- hydraulic fracturing --- water retention in shale --- anionic surfactant --- shale gas --- supercritical CO2 --- tectonic coal --- pore structure --- methane desorption --- embedded discrete fracture model --- fractured reservoir simulation --- matrix-fracture transmissibility --- combustion --- methane hydrate --- hydrate dissociation --- PTV method --- transport of tracers --- linear drift effect --- convection–diffusion equation --- enhanced oil recovery --- closed-form analytical solution --- methane --- combustion mechanism --- mechanism reduction --- skeletal mechanism --- Bunsen burner --- covert fault zone --- genetic mechanism --- Qikou Sag --- structure evolution --- oil-controlling mode --- Riedel shear --- Mohr–Coulomb theory --- slurry fuel --- ignition --- combustion --- combustion chamber --- soaring of fuel droplets --- trajectories of fuel droplets --- decorated polyacrylamide --- physical properties --- displacement mechanism --- flow behavior --- enhanced recovery --- injection mode --- coal consumption forecasting --- support vector machine --- improved gravitational search algorithm --- grey relational analysis --- dual string completion --- gas lift --- gas lift rate --- split factor --- gas robbing --- gas lift optimization

Microbial Fuel Cells 2018

Author:
ISBN: 9783039215355 9783039215348 Year: Pages: 84 DOI: 10.3390/books978-3-03921-534-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The rapid growth of global energy consumption and simultaneous waste discharge requires more sustainable energy production and waste disposal/recovery technology. In this respect, microbial fuel cell and bioelectrochemical systems have been highlighted to provide a platform for waste-to-energy and cost-efficient treatment. Microbial fuel cell technology has also contributed to both academia and industry through the development of breakthrough sustainable technologies, enabling cross- and multi-disciplinary approaches in microbiology, biotechnology, electrochemistry, and bioprocess engineering. To further spread these technologies and to help the implementation of microbial fuel cells, this Special Issue, entitled “Microbial Fuel Cells 2018”, was proposed for the international journal Energies. This Special Issue mainly covers original research and studies related to the above-mentioned topic, including, but not limited to, bioelectricity generation, microbial electrochemistry, useful resource recovery, system and process design, and the implementation of microbial fuel cells.

Fluid Flow in Fractured Porous Media

Authors: ---
ISBN: 9783039214235 9783039214242 Year: Volume: 1 Pages: 578 DOI: 10.3390/books978-3-03921-424-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

scanning electron microscope (SEM) images --- permeability --- high temperature --- Darcy’s law --- confining pressures --- chemical grouts --- grain size of sand --- initial water contained in sand --- grouted sand --- macroscopic mechanical behaviors --- microstructure characteristics --- ductile failure --- gas concentration --- gob-side entry retaining (GER) --- limestone roof --- roof-cutting resistance --- roadside backfill body (RBB) --- solid backfill coal mining --- goaf --- water soaked height --- loose gangue backfill material --- deformation --- crushing ratio --- fracture grouting --- cement–silicate grout --- geophysical prospecting --- seepage --- Yellow River Embankment --- contiguous seams --- water-dripping roadway --- roadway deformation --- bolt support --- pervious concrete --- permeability coefficient --- porosity --- pore distribution characteristics --- strength --- soil–structure interface --- internal erosion --- critical hydraulic gradient --- orthogonal tests --- Pseudo Steady-State (PPS) constant --- finite-conductivity fracture --- conductivity-influence function --- normalized conductivity-influence function --- circular closed reservoir --- glutenite --- gravel --- hydraulic fracture --- numerical simulation --- propagation --- glauberite cavern for storing oil &amp --- gas --- thermal-hydrological-chemical interactions --- temperature --- brine concentration --- microstructure --- micro-CT --- damage --- cyclic heating and cooling --- physical and mechanical parameters --- failure mode --- acoustic emission --- anisotropy --- bedding plane orientation --- coal --- gas --- adsorption–desorption --- laboratory experiment --- pore pressure --- hydro-mechanical coupling --- fracture closure --- constitutive model --- effective stress --- debris flow --- dynamic characteristics --- numerical analysis --- debris-resisting barriers --- coal measures sandstone --- creep characteristics --- seepage pressure --- seepage-creep --- microscopic morphology --- Darcy flow --- heterogeneity --- numerical manifold method --- high-order --- refraction law --- hydraulic fracture network --- cohesive element method --- coal seams --- fracture propagation --- discontinuous natural fracture --- secondary fracture --- fault water inrush --- coupled THM model --- nonlinear flow in fractured porous media --- numerical model --- warning levels of fault water inrush --- bentonite-sand mixtures --- differential settlement --- deformation --- hydraulic conductivity --- crack --- geogrid --- enhanced permeability --- deviatoric stress --- mechanical behavior transition --- CH4 seepage --- volumetric strain --- strain-based percolation model --- rock-soil mechanics --- soft filling medium --- segmented grouting --- split grouting --- model experiment --- reinforcement mechanism --- longwall mining --- gob behaviors --- stress relief --- permeability --- gas drainage --- hard and thick magmatic rocks --- orthogonal ratio test --- similar simulation --- fracture --- bed separation --- disaster-causing mechanism --- artificial joint rock --- shear-flow coupled test --- hydraulic aperture --- roughness --- seepage pressure --- mixing --- conservative solute --- fractal --- roughness --- fracture --- transversely isotropic rocks --- failure mechanism --- particle flow modeling --- interface --- n/a --- fractured porous rock mass --- grouting experiment --- visualization system --- flow law --- layered progressive grouting --- sandstone and mudstone particles --- rheological deformation --- segmented rheological model --- rheological limit strain --- rheological test --- water-rock interaction --- dry-wet cycles --- slope stability --- laboratory experiment --- mechanical properties --- Xinjiang --- land reclamation --- management period --- soil particle size --- fluid flow in reclaimed soil --- effluents --- soil properties --- cohesive soils --- contamination --- time variation --- stabilization --- mixer --- viscoelastic fluid --- pore structure --- orthogonal test --- fluid–solid coupling theory --- similar-material --- regression equation --- optimum proportioning --- hydraulic fracturing --- gas fracturing --- oriented perforation --- fracture propagation --- damage mechanics --- fluid viscosity --- CO2 flooding --- supercritical CO2 --- CO2 geological storage --- tight sandstone gas reservoirs --- enhanced gas recovery --- flotation --- coal particle --- collision angle --- initial settlement position --- particle velocity --- adhesion efficiency --- green mining --- paste-like slurry --- XRD --- intelligent torque rheometer --- on-site monitoring --- cyclic wetting-drying --- deterioration --- sandstone --- mudstone --- elastic modulus --- uniaxial compressive strength --- permeability characteristics --- grading broken gangue --- compressive stress --- compression deformation --- mine shaft --- alternate strata --- surrounding rock --- shaft lining --- relief excavation --- consolidation process --- unsaturated soil --- semi-analytical solution --- impeded drainage boundary --- excess pore-pressures --- coalbed methane (CBM) --- soft coal masses --- pore structure --- fractal pore characteristics --- hydraulic fractures --- PPCZ --- multitude parameters --- propagation pattern --- stress interference --- naturally fracture --- filtration effects --- grout penetration --- unified pipe-network method --- two-phase flow --- fractured porous medium --- new cementitious material --- cement-based paste discharge --- XRD --- TG/DTG --- SEM --- MIP --- mechanical behaviors --- rock fracture --- shear-flow coupled test --- constant normal stiffness conditions --- transmissivity --- hydraulic aperture --- water inrush prevention --- backfill mining --- strata movement --- ground pressure --- floor failure depth --- water–rock interaction --- degradation mechanism --- mixed mode fracture resistance --- fracture criteria --- T-stress --- hydro-power --- high-steep slope --- fractured rock --- permeability --- seepage control --- gas-bearing coal --- electrical potential --- charge separation --- gas adsorption --- damage evolution --- Unsaturation --- chloride --- concrete --- coupling model --- numerical calculation --- debris flow --- forecasting --- rainfall-unstable soil coupling mechanism(R-USCM) --- scoops3D --- Jiaohe --- non-aqueous phase liquid --- finite element method --- two-phase flow --- mixed-form formulation --- FLAC --- pore structure --- movable fluid --- tight sandstones --- Ordos Basin --- tectonically deformed coal --- coal and gas outburst --- coal-like material --- mechanical properties --- deformation feature --- adsorption/desorption properties --- minerals --- mechanical properties --- uniaxial compressive strength --- crack distribution characteristics --- discrete element method --- lignite --- nitric acid modification --- pore structure --- surface characteristics --- adsorption performance --- n/a

Fluid Flow in Fractured Porous Media

Authors: ---
ISBN: 9783039214730 9783039214747 Year: Volume: 2 Pages: 492 DOI: 10.3390/books978-3-03921-474-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

scanning electron microscope (SEM) images --- permeability --- high temperature --- Darcy’s law --- confining pressures --- chemical grouts --- grain size of sand --- initial water contained in sand --- grouted sand --- macroscopic mechanical behaviors --- microstructure characteristics --- ductile failure --- gas concentration --- gob-side entry retaining (GER) --- limestone roof --- roof-cutting resistance --- roadside backfill body (RBB) --- solid backfill coal mining --- goaf --- water soaked height --- loose gangue backfill material --- deformation --- crushing ratio --- fracture grouting --- cement–silicate grout --- geophysical prospecting --- seepage --- Yellow River Embankment --- contiguous seams --- water-dripping roadway --- roadway deformation --- bolt support --- pervious concrete --- permeability coefficient --- porosity --- pore distribution characteristics --- strength --- soil–structure interface --- internal erosion --- critical hydraulic gradient --- orthogonal tests --- Pseudo Steady-State (PPS) constant --- finite-conductivity fracture --- conductivity-influence function --- normalized conductivity-influence function --- circular closed reservoir --- glutenite --- gravel --- hydraulic fracture --- numerical simulation --- propagation --- glauberite cavern for storing oil &amp --- gas --- thermal-hydrological-chemical interactions --- temperature --- brine concentration --- microstructure --- micro-CT --- damage --- cyclic heating and cooling --- physical and mechanical parameters --- failure mode --- acoustic emission --- anisotropy --- bedding plane orientation --- coal --- gas --- adsorption–desorption --- laboratory experiment --- pore pressure --- hydro-mechanical coupling --- fracture closure --- constitutive model --- effective stress --- debris flow --- dynamic characteristics --- numerical analysis --- debris-resisting barriers --- coal measures sandstone --- creep characteristics --- seepage pressure --- seepage-creep --- microscopic morphology --- Darcy flow --- heterogeneity --- numerical manifold method --- high-order --- refraction law --- hydraulic fracture network --- cohesive element method --- coal seams --- fracture propagation --- discontinuous natural fracture --- secondary fracture --- fault water inrush --- coupled THM model --- nonlinear flow in fractured porous media --- numerical model --- warning levels of fault water inrush --- bentonite-sand mixtures --- differential settlement --- deformation --- hydraulic conductivity --- crack --- geogrid --- enhanced permeability --- deviatoric stress --- mechanical behavior transition --- CH4 seepage --- volumetric strain --- strain-based percolation model --- rock-soil mechanics --- soft filling medium --- segmented grouting --- split grouting --- model experiment --- reinforcement mechanism --- longwall mining --- gob behaviors --- stress relief --- permeability --- gas drainage --- hard and thick magmatic rocks --- orthogonal ratio test --- similar simulation --- fracture --- bed separation --- disaster-causing mechanism --- artificial joint rock --- shear-flow coupled test --- hydraulic aperture --- roughness --- seepage pressure --- mixing --- conservative solute --- fractal --- roughness --- fracture --- transversely isotropic rocks --- failure mechanism --- particle flow modeling --- interface --- n/a --- fractured porous rock mass --- grouting experiment --- visualization system --- flow law --- layered progressive grouting --- sandstone and mudstone particles --- rheological deformation --- segmented rheological model --- rheological limit strain --- rheological test --- water-rock interaction --- dry-wet cycles --- slope stability --- laboratory experiment --- mechanical properties --- Xinjiang --- land reclamation --- management period --- soil particle size --- fluid flow in reclaimed soil --- effluents --- soil properties --- cohesive soils --- contamination --- time variation --- stabilization --- mixer --- viscoelastic fluid --- pore structure --- orthogonal test --- fluid–solid coupling theory --- similar-material --- regression equation --- optimum proportioning --- hydraulic fracturing --- gas fracturing --- oriented perforation --- fracture propagation --- damage mechanics --- fluid viscosity --- CO2 flooding --- supercritical CO2 --- CO2 geological storage --- tight sandstone gas reservoirs --- enhanced gas recovery --- flotation --- coal particle --- collision angle --- initial settlement position --- particle velocity --- adhesion efficiency --- green mining --- paste-like slurry --- XRD --- intelligent torque rheometer --- on-site monitoring --- cyclic wetting-drying --- deterioration --- sandstone --- mudstone --- elastic modulus --- uniaxial compressive strength --- permeability characteristics --- grading broken gangue --- compressive stress --- compression deformation --- mine shaft --- alternate strata --- surrounding rock --- shaft lining --- relief excavation --- consolidation process --- unsaturated soil --- semi-analytical solution --- impeded drainage boundary --- excess pore-pressures --- coalbed methane (CBM) --- soft coal masses --- pore structure --- fractal pore characteristics --- hydraulic fractures --- PPCZ --- multitude parameters --- propagation pattern --- stress interference --- naturally fracture --- filtration effects --- grout penetration --- unified pipe-network method --- two-phase flow --- fractured porous medium --- new cementitious material --- cement-based paste discharge --- XRD --- TG/DTG --- SEM --- MIP --- mechanical behaviors --- rock fracture --- shear-flow coupled test --- constant normal stiffness conditions --- transmissivity --- hydraulic aperture --- water inrush prevention --- backfill mining --- strata movement --- ground pressure --- floor failure depth --- water–rock interaction --- degradation mechanism --- mixed mode fracture resistance --- fracture criteria --- T-stress --- hydro-power --- high-steep slope --- fractured rock --- permeability --- seepage control --- gas-bearing coal --- electrical potential --- charge separation --- gas adsorption --- damage evolution --- Unsaturation --- chloride --- concrete --- coupling model --- numerical calculation --- debris flow --- forecasting --- rainfall-unstable soil coupling mechanism(R-USCM) --- scoops3D --- Jiaohe --- non-aqueous phase liquid --- finite element method --- two-phase flow --- mixed-form formulation --- FLAC --- pore structure --- movable fluid --- tight sandstones --- Ordos Basin --- tectonically deformed coal --- coal and gas outburst --- coal-like material --- mechanical properties --- deformation feature --- adsorption/desorption properties --- minerals --- mechanical properties --- uniaxial compressive strength --- crack distribution characteristics --- discrete element method --- lignite --- nitric acid modification --- pore structure --- surface characteristics --- adsorption performance --- n/a

Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications

Author:
ISBN: 9783039287208 / 9783039287215 Year: Pages: 470 DOI: 10.3390/books978-3-03928-721-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.

Keywords

dynamic hydraulic-fracturing experiments --- dynamic crack tip --- fluid front kinetics --- energy conservation analysis --- cost-effective --- frequency conversion technology (FCT) --- ventilation --- methane removal --- computational fluid dynamic (CFD) --- spatiotemporal characteristics --- capacitance-resistance model --- aquifer support --- inter-well connectivity --- production optimization --- karst carbonate reservoir --- tight reservoir --- huff-‘n-puff --- fracture simulation --- enhanced oil recovery --- CO2 diffusion --- percolation model --- fractal theory --- microstructure --- critical porosity --- conductivity --- permeability --- tight oil reservoirs --- fracture compressibility --- numerical simulation --- flowback --- fracture uncertainty --- enhanced geothermal systems --- multiple parallel fractures --- semi-analytical solution --- main gas pipeline --- pressure fluctuations --- unsteady process --- multifractal theory --- fractal theory --- pore structure --- mercury intrusion porosimetry --- pore size distribution --- natural gas --- pipeline network --- continuity/momentum and energy equations coupled --- efficient simulation --- enhanced gas recovery --- longitudinal dispersion coefficient --- injection orientation --- supercritical CO2 --- CO2 permeability --- Coal excavation --- coal and rock fracture --- multiple structural units (MSU) --- energy dissipation --- AE energy --- cement --- non-Newtonian fluids --- rheology --- variable viscosity --- diffusion --- underground coal gasification (UCG) --- economics --- cost of electricity (COE) --- techno-economic model --- methanol --- ammonia --- carbon capture and storage (CCS) --- carbon capture and utilization (CCU) --- electricity generation --- process simulation --- fractal --- slippage effect --- Knudsen diffusion --- surface diffusion --- apparent permeability --- wellbore temperature --- bottom-hole pressure --- multi-pressure system --- comprehensive heat transfer model --- leakage and overflow --- GSHP (ground source heat pump) --- heat transfer --- coupled heat conduction and advection --- nest of tubes --- three-dimensional numerical simulation --- sloshing --- real-scale --- highly viscous fluids --- Navier-Stokes equations --- impact pressure --- flowback --- complex fracture network --- shale oil --- porous media --- fractal theory --- particles model --- permeability --- tube bundle model --- cement slurries --- non-Newtonian fluids --- rheology --- constitutive relations --- viscosity --- yield stress --- thixotropy --- mathematical modeling --- computational fluid dynamics (CFD) --- drilling --- porous media --- multiphase flow --- hydraulic fracturing --- geothermal --- enhanced oil recovery

Selected Papers from the 8th Annual Conference of Energy Economics and Management

Authors: --- ---
ISBN: 9783039214570 9783039214587 Year: Pages: 162 DOI: 10.3390/books978-3-03921-458-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

This collection represents successful invited submissions from the papers presented at the 8th Annual Conference of Energy Economics and Management held in Beijing, China, 22–24 September 2017. With over 500 participants, the conference was co-hosted by the Management Science Department of National Natural Science Foundation of China, the Chinese Society of Energy Economics and Management, and Renmin University of China on the subject area of “Energy Transition of China: Opportunities and Challenges”. The major strategies to transform the energy system of China to a sustainable model include energy/economic structure adjustment, resource conservation, and technology innovation. Accordingly, the conference and its associated publications encourage research to address the major issues faced in supporting the energy transition of China. Papers published in this collection cover the broad spectrum of energy economics issues, including building energy efficiency, industrial energy demand, public policies to promote new energy technologies, power system control technology, emission reduction policies in energy-intensive industries, emission measurements of cities, energy price movement, and the impact of new energy vehicle.

Listing 1 - 10 of 22 << page
of 3
>>
Sort by
Narrow your search