Search results: Found 16

Listing 1 - 10 of 16 << page
of 2
>>
Sort by
Therapeutic Implications of Circadian Rhythms

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196654 Year: Pages: 96 DOI: 10.3389/978-2-88919-665-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Therapeutics
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Circadian rhythms are biological processes displaying endogenous and entrainable oscillations of about 24 hours. They are driven by a group of genes called clock genes that have been widely observed in plants, animals and even in bacteria. In mammals, the core clock genes are rhythmically expressed in both the suprachiasmatic nucleus (SCN), the master clock residing in the hypothalamus, and almost all peripheral tissues where they control numerous target genes in a circadian manner, and thus affect many physiological and biochemical processes. Evidence suggests that disruption of the circadian rhythms (or desynchronization) is a significant risk factor for the development of metabolic diseases, cardiovascular diseases, cancer and sleep disorders. Evidence also suggests that the disruption suppresses immune function and increases vulnerability to infectious diseases. Restoring or strengthening the circadian rhythm may be therapeutic for these conditions. This becomes exceptionally important in modern societies because many people are suffering from frequent desynchronization due to shift working, exposure to artificial light, travel by transmeridian air flight, and involvement in social activities. Besides, the temporal variations in the incidence and severity of many diseases, such as the onset of cardiovascular events, chronic obstructive pulmonary disease (COPD), inflammatory diseases and mental disorders have also drawn increasing attention to the circadian clock. The circadian rhythms affect not only the health status, but also the drug efficiency. The effects (and side effects) of many drugs vary with biological timing. The tolerance of many medications displays circadian variation as well. The timing of medical treatment in coordination with the body clock may significantly increase the desired effects of drugs, and lower the dose and toxicity. In addition, circadian rhythms can also be modulated by some therapeutic drugs, for example, melatonin and modafinil, which are used to treat circadian rhythm sleep disorders. In this Research Topic, we assemble a series of critical review and research articles that focus on the therapeutic implications of circadian rhythms. Topics include, but are not limited to: • Circadian disruption caused diseases or disorders and related intervention • Temporal manifestation of diseases or disorders and therapeutic implications • The effects of circadian rhythms on drugs • The effects of drugs on circadian rhythms

Sleep and Chronobiology in Plasticity and Memory

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197460 Year: Pages: 120 DOI: 10.3389/978-2-88919-746-0 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Chronobiological mechanisms regulating time-of-day mediated behaviors, such as sleep and circadian rhythms, are thought to interact with and/or share cellular and molecular signaling cascades that shape synaptic plasticity and neural excitability. These same factors are also known to underlie events that govern higher-order cognitive processing, including learning and memory formation, and often through phylogenetically conserved pathways. This suggests that factors which contribute to adaptive responses to changing environmental stimuli are likely derived from basic evolutionarily ancient processes, and underscores the importance of using both invertebrate and vertebrate models to study the interaction of chronobiology and cognitive processing. This issue highlights current views along with original research on sleep and circadian features of plasticity and memory in multiple species, models, and systems.

Keywords

Sleep --- circadian rhythms --- Memory --- plasticity --- Learning --- synapse

Circadian Rhythms and Metabolism

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452828 Year: Pages: 188 DOI: 10.3389/978-2-88945-282-8 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Internal medicine --- Science (General) --- Neurology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

One of the major breakthroughs of the last decade in the understanding of energy homeostasis is the identification of a reciprocal control between circadian rhythmicity and cellular metabolism. Circadian rhythmicity is a fundamental endogenous process of almost every organism living on Earth. For instance, the alternation of hunger and satiety is not continuous over 24 h, but is instead structured in time along the light/dark cycle. In mammals, the temporal organization of metabolism, physiology and behavior around 24 h is controlled by a network of multiple cellular clocks, synchronized via neuronal and hormonal signals by a master clock located in the suprachiasmatic nuclei of the hypothalamus. This central circadian conductor in the brain is mainly reset by ambient light perceived by the retina, while secondary circadian clocks in other brain areas and peripheral organs can be reset by meal timing. Chronic disruption of circadian rhythms, as seen in human shift-workers (up to 20% of the active population), has been associated with the development of a number of adverse mental and metabolic conditions. Understanding of the functional links between circadian desynchronization and overall health in animal models and humans, however, is still scarce. Interactions between circadian clocks and metabolism can occur at different levels: the molecular clockwork, internal synchronization via neuro-hormonal signals, or external synchronization via photic or feeding cues. This Research Topic comprises a number of reviews as well as research and methods articles that feature recent advancements in the mechanisms linking circadian clocks with energy metabolism, and the pathophysiological implications of these interactions for metabolic health.

Neuroendocrine mechanisms that connect feeding behavior and stress

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195077 Year: Pages: 189 DOI: 10.3389/978-2-88919-507-7 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Research during the past decade highlights the strong link between appetitive feeding behavior, reward and motivation. Interestingly, stress levels can affect feeding behavior by manipulating hypothalamic circuits and brain dopaminergic reward pathways. Indeed, animals and people will increase or decrease their feeding responses when stressed. In many cases acute stress leads to a decrease in food intake, yet chronic social stressors are associated to increases in caloric intake and adiposity. Interestingly, mood disorders and the treatments used to manage these disorders are also associated with changes in appetite and body weight. These data suggest a strong interaction between the systems that regulate feeding and metabolism and those that regulate mood. This Research Topic aims to illustrate how hormonal mechanisms regulate the nexus between feeding behavior and stress. It focuses on the hormonal regulation of hypothalamic circuits and/or brain dopaminergic systems, as the potential sites controlling the converging pathways between feeding behavior and stress.

Plasticity in the sensory systems of invertebrates

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192816 Year: Pages: 78 DOI: 10.3389/978-2-88919-281-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

The visual, olfactory, auditory and gustatory systems of invertebrates are often used as models to study the transduction, transmission and processing of information in nervous systems, and in recent years have also provided powerful models of neural plasticity. This Research Topic presents current views on plasticity and its mechanisms in invertebrate sensory systems at the cellular, molecular and network levels, approached from both physiological and morphological perspectives. Plasticity in sensory systems can be activity- dependent, or occur in response to changes in the environment, or to endogenous stimuli. Plastic changes have been reported in receptor neurons, but are also known in other cell types, including glial cells and sensory interneurons. Also reported are dynamic changes among neuronal circuits involved in transmitting sensory stimuli and in reorganizing of synaptic contacts within a particular sensory system. Plastic changes within sensory systems in invertebrates can also be reported during development, after injury and after short or long- term stimulation. All these changes occur against an historical backdrop which viewed invertebrate nervous systems as largely hard-wired, and lacking in susceptibility especially to activity-dependent changes. This Research Topic examines how far we have moved from this simple view of simple brains, to the realization that invertebrate sensory systems exhibit all the diversity of plastic changes seen in vertebrate brains, but among neurons in which such changes can be evaluated at single-cell level.

Development of the Hypothalamus

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196340 Year: Pages: 264 DOI: 10.3389/978-2-88919-634-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

The hypothalamus is the region of the brain in charge of the maintenance of the internal milieu of the organism. It is also essential to orchestrate reproductive, parental, aggressive-defensive, and other social behaviors, and for the expression of emotions. Due to the structural complexity of the hypothalamus, however, many basic aspects of its ontogenesis are still mysterious. Nowadays we assist to a renewal of interest spurred in part by the growing realization that prenatal and early postnatal influences on the hypothalamus could entail pathological conditions later in life. Intriguing questions for the future include: do early specification phenomena reflect on adult hypothalamic function and possibly on some kinds of behavior? Can early events like specification, migration or formation of nuclei influence adult hypothalamic function? A change in morphological paradigm, from earlier columnar interpretations to neuromeric ones, is taking place. Concepts long taken for granted start to be challenged in view of advances in developmental and comparative neurobiology, and notably also in the molecular characterization of hypothalamic structures. How should we understand the position of the hypothalamus in relation to other brain regions? Should we bundle it together with the thalamus, a functionally, genetically and developmentally very different structure? Does the classic concept of “diencephalon” make sense, or should the hypothalamus be separated? Does the preoptic area belong to the hypothalamus or the telencephalon? The answer to these questions in the context of recent causal molecular analysis will help to understand hypothalamic evolution and morphogenesis as well as its adult function and connectivity. In this Research Topic we have reviewed the fundamentals of hypothalamic ontogenesis and evolution, summarizing present-day knowledge, taking stock of the latest advances, and anticipating future challenges.

Keywords

Cadherins --- circadian --- Mammillary --- MCH --- Nkx2.4 --- Notch --- Oxytocin --- prosomeric --- Shh --- thyroid

Trends in Neuroendocrinology

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450725 Year: Pages: 138 DOI: 10.3389/978-2-88945-072-5 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General) --- Internal medicine --- Medicine (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Neuroendocrinology is the discipline that investigates the interplay between the nervous and endocrine systems i.e. the control of endocrine glands by the central and peripheral nervous systems, the action of hormones on nerve cells and the production of hormones by the nervous system. The present Research Topic is a compilation of contributions stemming from the 8th International Congress of Neuroendocrinology (ICN2014) held in Sydney, Australia, that illustrates various facets of current neuroendocrine research.

Intrinsic Clocks

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454518 Year: Pages: 117 DOI: 10.3389/978-2-88945-451-8 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Neurology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

"Intrinsic Clocks" presents an array of current research activities on intrinsic clocks and their contributions to biology and physiology. It elucidates the current models for the intrinsic clocks, their molecular components and key mechanisms as well as the key brain regions and animal models for their behavioral analysis.It provides a timely view on how these clocks guide behavior, and how their disruption may cause depressive-like behavior and impairment in cognitive functions. Thereby, any specific method by which the mood-related functions of the intrinsic clocks might be influenced bears therapeutic potential and has clinical interest.The importance of some of these mechanisms was highlighted by the 2017 award of the Nobel Prize in Physiology or Medicine to Jeffrey C. Hall, Michael Rosbash, and Michael W. Young for their discoveries of the genetic control of the daily biological rhythm. The key to the explanation was the discovery of transcription-translation feedback loops of the so-called “clock genes.”

Current Trends of Insect Physiology and Population Dynamics: Modeling Insect Phenology, Demography, and Circadian Rhythms in Variable Environments

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454891 Year: Pages: 155 DOI: 10.3389/978-2-88945-489-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

The current eBook collection includes substantial scientific work in describing how insect species are responding to abiotic factors and recent climatic trends on the basis of insect physiology and population dynamics. The contributions can be broadly split into four chapters: the first chapter focuses on the function of environmental and mostly temperature driven models, to identify the seasonal emergence and population dynamics of insects, including some important pests. The second chapter provides additional examples on how such models can be used to simulate the effect of climate change on insect phenology and population dynamics. The third chapter focuses on describing the effects of nutrition, gene expression and phototaxis in relation to insect demography, growth and development, whilst the fourth chapter provides a short description on the functioning of circadian systems as well as on the evolutionary dynamics of circadian clocks.

Salicylic Acid Signaling Networks

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198276 Year: Pages: 188 DOI: 10.3389/978-2-88919-827-6 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The small phenolic compound salicylic acid (SA) is critical for plant defense against a broad spectrum of pathogens. SA is also involved in multi-layered defense responses, from pathogen-associated molecular pattern triggered basal defense, resistance gene-mediated defense, to systemic acquired resistance. Recent decades have witnessed tremendous progress towards our understanding of SA-mediated signaling networks. Many genes have been identified to have direct or indirect effect on SA biosynthesis or to regulate SA accumulation. Several SA receptors have been identified and characterization of these receptors has shed light on the mechanisms of SA-mediated defense signaling, which encompass chromosomal remodeling, DNA repair, epigenetics, to transcriptional reprogramming. Molecules from plant-associated microbes have been identified, which manipulate SA levels and/or SA signaling. SA does not act alone. It engages in crosstalk with other signaling pathways, such as those mediated by other phytohormones, in an agonistic or antagonistic manner, depending on hormones and pathosystems. Besides affecting plant innate immunity, SA has also been implicated in other cellular processes, such as flowering time determination, lipid metabolism, circadian clock control, and abiotic stress responses, possibly contributing to the regulation of plant development. The multifaceted function of SA makes it critically important to further identify genes involved in SA signaling networks, understand their modes of action, and delineate interactions among the components of SA signaling networks. In addition, genetic manipulation of genes involved in SA signaling networks has also provided a promising approach to enhance disease resistance in economically important plants. This ebook collects articles in the Research Topic "Salicylic Acid Signaling Networks". For this collection we solicited reviews, perspectives, and original research articles that highlight recent exciting progress on the understanding of molecular mechanisms underlying SA-mediated defense, SA-crosstalk with other pathways and how microbes impact these events.

Listing 1 - 10 of 16 << page
of 2
>>
Sort by
Narrow your search

Publisher

Frontiers Media SA (10)

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by (10)

CC by-nc-nd (6)


Language

english (16)


Year
From To Submit

2020 (2)

2019 (4)

2018 (2)

2017 (1)

2016 (3)

2015 (3)

2014 (1)