Search results: Found 14

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Einfluss von Mikrostruktur und Materialparametern auf die Leistungsfähigkeit poröser Elektroden für Lithium-Ionen Batterien

Author:
Book Series: Schriften des Instituts für Angewandte Materialien - Werkstoffe der Elektrotechnik, Karlsruher Institut für Technologie / Institut für Angewandte Materialien - Werkstoffe der Elektrotechnik ISSN: 23658029 ISBN: 9783731508212 Year: Volume: 33 Pages: IV, 235 p. DOI: 10.5445/KSP/1000084353 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-28 18:37:01
License:

Loading...
Export citation

Choose an application

Abstract

The model-aided cathode design for lithium ion batteries is presented, which enables a systematically minimization of loss processes and an increase of power and energy density. The cathode model is parametrized without values from literature by combining microstructure analysis via FIB/SEM tomography and electrochemical impedance spectroscopy and finally validated.

Grain-size effects in nanoscaled electrolyte and cathode thin films for solid oxide fuel cells (SOFC)

Author:
Book Series: Schriften des Instituts für Werkstoffe der Elektrotechnik, Universität Karlsruhe (TH) / Institut für Werkstoffe der Elektrotechnik ISSN: 18681603 ISBN: 9783866443365 Year: Volume: 15 Pages: VIII, 155 p. DOI: 10.5445/KSP/1000010126 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

Due to their high energy conversion efficiencies and low emissions, Solid Oxide Fuel Cells (SOFCs) show promise as a replacement for combustion-based electrical generators at all sizes. Further increase of SOFC efficiency can be achieved by microstructural optimization of the oxygen-ion conducting electrolyte and the mixed ionic-electronic conducting cathode. By application of nanoscaled thin films, the exceptionally high efficiency allows the realization of mobile SOFCs.

Elektrochemisches Verhalten von Lithium-Schwefel-Zellen mit unterschiedlicher Kathodenstruktur

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie ISSN: 21929963 ISBN: 9783731502968 Year: Volume: 46 Pages: IX, 183 p. DOI: 10.5445/KSP/1000044087 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

The storage of energy is one main bottle-neck of the german energy transition. The lithium-sulfur battery with its high theoretical specific values can here play a major role. Depending on the composition and production of the cathode, the electrochemical characteristics of the battery vary greatly. In this work, the influence of the cathode structure and composition was analysed in terms of capacity and lifetime of lithium-sulfur cells.

Advances in Electrochemical Energy Materials

Authors: ---
ISBN: 9783039286423 / 9783039286430 Year: Pages: 156 DOI: 10.3390/books978-3-03928-643-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Electrochemical energy storage is becoming essential for portable electronics, electrified transportation, integration of intermittent renewable energy into grids, and many other energy and power applications. The electrode materials and their structures, in addition to the electrolytes, play key roles in supporting a multitude of coupled physicochemical processes that include electronic, ionic, and diffusive transport in electrode and electrolyte phases, electrochemical reactions and material phase changes, as well as mechanical and thermal stresses, thus determining the storage energy density and power density, conversion efficiency, performance lifetime, and system cost and safety. Different material chemistries and multiscale porous structures are being investigated for high performance and low cost. The aim of this Special Issue is to report the recent advances in materials used in electrochemical energy storage that encompass supercapacitors and rechargeable batteries.

Finite Element Method (FEM) Model and Performance Analysis of Solid Oxide Fuel Cells

Author:
Book Series: Schriften des Instituts für Angewandte Materialien - Werkstoffe der Elektrotechnik, Karlsruher Institut für Technologie / Institut für Angewandte Materialien - Werkstoffe der Elektrotechnik ISSN: 23658029 ISBN: 9783731508953 Year: Volume: 36 Pages: XIII, 259 p. DOI: 10.5445/KSP/1000090508 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

This work presents a numerical FEM framework, capable of predicting SOFC performance under technically relevant, planar stack contacting conditions. A high level of confidence in the model predictions is supplied by using exclusively experimentally determined material/kinetic parameters and by a comprehensive validation. The presented model aids SOFC stack development by pre-evaluating possible material choices and design combinations for cells/interconnectors without any experimental effort.

Microbial Fuel Cells 2018

Author:
ISBN: 9783039215355 9783039215348 Year: Pages: 84 DOI: 10.3390/books978-3-03921-534-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The rapid growth of global energy consumption and simultaneous waste discharge requires more sustainable energy production and waste disposal/recovery technology. In this respect, microbial fuel cell and bioelectrochemical systems have been highlighted to provide a platform for waste-to-energy and cost-efficient treatment. Microbial fuel cell technology has also contributed to both academia and industry through the development of breakthrough sustainable technologies, enabling cross- and multi-disciplinary approaches in microbiology, biotechnology, electrochemistry, and bioprocess engineering. To further spread these technologies and to help the implementation of microbial fuel cells, this Special Issue, entitled “Microbial Fuel Cells 2018”, was proposed for the international journal Energies. This Special Issue mainly covers original research and studies related to the above-mentioned topic, including, but not limited to, bioelectricity generation, microbial electrochemistry, useful resource recovery, system and process design, and the implementation of microbial fuel cells.

Batteries and Supercapacitors Aging

Authors: ---
ISBN: 9783039287147 / 9783039287154 Year: Pages: 214 DOI: 10.3390/books978-3-03928-715-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Electrochemical energy storage is a key element of systems in a wide range of sectors, such as electro-mobility, portable devices, and renewable energy. The energy storage systems (ESSs) considered here are batteries, supercapacitors, and hybrid components such as lithium-ion capacitors. The durability of ESSs determines the total cost of ownership, the global impacts (lifecycle) on a large portion of these applications and, thus, their viability. Understanding ESS aging is a key to optimizing their design and usability in terms of their intended applications. Knowledge of ESS aging is also essential to improve their dependability (reliability, availability, maintainability, and safety). This Special Issue includes 12 research papers and 1 review article focusing on battery, supercapacitor, and hybrid capacitor aging.

Keywords

battery --- operative dependability --- selection algorithm --- capacitance --- state-of-charge monitoring --- self-discharge --- supercapacitor --- aging --- lithium-ion capacitor --- aging model --- langmuir isotherm --- lifetime prediction --- aging mechanisms --- calendar aging --- floating aging --- autonomous devices --- lead-acid batteries --- Petri nets --- second life battery --- lithium-ion --- electrical characterization --- state-of-health (SOH) --- partial coulometric counter --- lithium-ion --- NMC --- aging --- ampere-hour throughput --- incremental capacity analysis --- accelerated ageing --- battery management system --- battery management system (BMS) --- calendar ageing --- cycling ageing --- electric vehicle --- embedded algorithm --- incremental capacity analysis --- incremental capacity analysis (ICA) --- lithium-ion battery --- lithium iron phosphate --- LFP --- LiFePO4 --- remaining capacity --- state of health (SoH) --- incremental capacity analysis --- lithium-ion --- electric vehicles --- driving cycles --- cell degradation --- lithium-ion --- batteries --- ageing --- post-mortem analysis --- lithium-ion battery --- lamination --- electrochemical impedance spectroscopy --- fast-charging capability --- lifetime --- abuse test --- lithium-ion capacitor --- safety --- temperature --- thermal runaway --- battery life testing --- capacitance --- state-of-charge determination --- state-of-health --- aging --- impedance spectroscopy --- pseudo-charge --- Li-Ion battery --- Ni-rich cathode --- degradation --- cathode-electrolyte interphase --- electro mobility --- n/a

Thin Films for Energy Harvesting, Conversion, and Storage

Authors: --- ---
ISBN: 9783039217243 9783039217250 Year: Pages: 174 DOI: 10.3390/books978-3-03921-725-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research findings. This thematic topic undoubtedly represents an extremely important technological direction, covering materials processing, characterization, simulation, and performance evaluation of thin films used in energy harvesting, conversion, and storage.

Graphene and Other 2D Layered Nanomaterial-Based Films: Synthesis, Properties and Applications

Authors: ---
ISBN: 9783039219025 9783039219032 Year: Pages: 138 DOI: 10.3390/books978-3-03921-903-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Organic Chemistry
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

This book is dedicated to highlighting some relevant advances in the field of thin films and coatings based on two-dimensional crystals and layered nanomaterials. Due to their layered structure, graphene and a variety of new 2D inorganic nanosystems, called “graphene analogues”, have all attracted tremendous interest due to their unprecedented properties/superior performance, and may find applications in many fields from electronics to biotechnology. These two-dimensional systems are ultrathin and, hence, tend to be flexible, also presenting distinctive and nearly intrinsic characteristics, including electronic, magnetic, optical, thermal conductivity, and superconducting properties. Furthermore, the combination of different structures and synergetic effects may open new and unprecedented perspectives, making these ideal advanced materials for multifunctional assembled systems. As far as the field of coatings is concerned, new layered nanostructures may offer unique and multifunctional properties, including gas barrier, lubricant, conductive, magnetic, photoactive, self-cleaning, and/or antimicrobial surfaces. This book contains new findings on the synthesis and perspectives of multifunctional films that are at the forefront of the science and coating technologies.

MEMS Accelerometers

Authors: --- ---
ISBN: 9783038974147 9783038974154 Year: Pages: 252 DOI: 10.3390/books978-3-03897-415-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc.

Keywords

low-temperature co-fired ceramic (LTCC) --- capacitive accelerometer --- wireless --- process optimization --- performance characterization --- MEMS accelerometer --- mismatch of parasitic capacitance --- electrostatic stiffness --- high acceleration sensor --- piezoresistive effect --- MEMS --- micro machining --- turbulent kinetic energy dissipation rate --- probe --- microelectromechanical systems (MEMS) piezoresistive sensor chip --- Taguchi method --- marine environmental monitoring --- accelerometer --- frequency --- acceleration --- heat convection --- motion analysis --- auto-encoder --- dance classification --- deep learning --- self-coaching --- wavelet packet --- classification of horse gaits --- MEMS sensors --- gait analysis --- rehabilitation assessment --- body sensor network --- MEMS accelerometer --- electromechanical delta-sigma --- built-in self-test --- in situ self-testing --- digital resonator --- accelerometer --- activity monitoring --- regularity of activity --- sleep time duration detection --- indoor positioning --- WiFi-RSSI radio map --- MEMS-IMU accelerometer --- zero-velocity update --- step detection --- stride length estimation --- field emission --- hybrid integrated --- vacuum microelectronic --- cathode tips array --- interface ASIC --- micro-electro-mechanical systems (MEMS) --- delaying mechanism --- safety and arming system --- accelerometer --- multi-axis sensing --- capacitive transduction --- inertial sensors --- three-axis accelerometer --- micromachining --- miniaturization --- stereo visual-inertial odometry --- fault tolerant --- hostile environment --- MEMS-IMU --- mode splitting --- Kerr noise --- angular-rate sensing --- whispering-gallery-mode --- optical microresonator --- three-axis acceleration sensor --- MEMS technology --- sensitivity --- L-shaped beam --- n/a

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Narrow your search