Search results: Found 14

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Asymmetric and Selective Biocatalysis

Authors: ---
ISBN: 9783038978466 9783038978473 Year: Pages: 154 DOI: 10.3390/books978-3-03897-847-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-06-26 09:16:44
License:

Loading...
Export citation

Choose an application

Abstract

This Issue contains one communication, six articles, and two reviews. The communication from Paola Vitale et al. represents a work where whole cells were used as biocatalysts for the reduction of optically active chloroalkyl arylketones followed by a chemical cyclization to give the desired heterocycles. Among the various whole cells screened (baker’s yeast, Kluyveromyces marxianus CBS 6556, Saccharomyces cerevisiae CBS 7336, Lactobacillus reuteri DSM 20016), baker’s yeast provided the best yields and the highest enantiomeric ratios (95:5) in the bioreduction of the above ketones. In this respect, valuable chiral non-racemic functionalized oxygen-containing heterocycles (e.g., (S)-styrene oxide, (S)-2-phenyloxetane, (S)-2-phenyltetrahydrofuran), amenable to be further elaborated on, can be smoothly and successfully generated from their prochiral precursors. Studies about pure biocatalysts with mechanistical studies, application in different reactions, and new immobilization methods for improving their stability were reported in five different articles. The article by Su-Yan Wang et al. describes the cloning, expression, purification, and characterization of an N-acetylglucosamine 2-epimerase from Pedobacter heparinus (PhGn2E). For this, several N-acylated glucosamine derivatives were chemically synthesized and used to test the substrate specificity of the enzyme. The mechanism of the enzyme was studied by hydrogen/deuterium NMR. The study at the anomeric hydroxyl group and C-2 position of the substrate in the reaction mixture confirmed the epimerization reaction via ring-opening/enolate formation. Site-directed mutagenesis was also used to confirm the proposed mechanism of this interesting enzyme. The article by Forest H. Andrews et al. studies two enzymes, benzoylformate decarboxylase (BFDC) and pyruvate decarboxylase (PDC), which catalyze the non-oxidative decarboxylation of 2-keto acids with different specificity. BFDC from Pseudomonas putida exhibited very limited activity with pyruvate, whereas the PDCs from S. cerevisiae or from Zymomonas mobilis showed virtually no activity with benzoylformate (phenylglyoxylate). After studies using saturation mutagenesis, the BFDC T377L/A460Y variant was obtained, with 10,000-fold increase in pyruvate/benzoylformate. The change was attributed to an improvement in the Km value for pyruvate and a decrease in the kcat value for benzoylformate. The characterization of the new catalyst was performed, providing context for the observed changes in the specificity. The article by Xin Wang et al. compares two types of biocatalysts to produce D-lysine L-lysine in a cascade process catalyzed by two enzymes: racemase from microorganisms that racemize L-lysine to give D,L-lysine and decarboxylase that can be in cells, permeabilized cells, and the isolated enzyme. The comparison between the different forms demonstrated that the isolated enzyme showed the higher decarboxylase activity. Under optimal conditions, 750.7 mmol/L D-lysine was finally obtained from 1710 mmol/L L-lysine after 1 h of racemization reaction and 0.5 h of decarboxylation reaction. D-lysine yield could reach 48.8% with enantiomeric excess (ee) of 99%. In the article by Rivero and Palomo, lipase from Candida rugosa (CRL) was highly stabilized at alkaline pH in the presence of PEG, which permitted its immobilization for the first time by multipoint covalent attachment on different aldehyde-activated matrices. Different covalent immobilized preparation of the enzyme was successfully obtained. The thermal and solvent stability was highly increased by this treatment, and the novel catalysts showed high regioselectivity in the deprotection of per-O-acetylated nucleosides. The article by Robson Carlos Alnoch et al. describes the protocol and use of a new generation of tailor-made bifunctional supports activated with alkyl groups that allow the immobilization of proteins through the most hydrophobic region of the protein surface and aldehyde groups that allows the covalent immobilization of the previously adsorbed proteins. These supports were especially used in the case of lipase immobilization. The immobilization of a new metagenomic lipase (LipC12) yielded a biocatalyst 3.5-fold more active and 5000-fold more stable than the soluble enzyme. The PEGylated immobilized lipase showed high regioselectivity, producing high yields of the C-3 monodeacetylated product at pH 5.0 and 4 °C. Hybrid catalysts composed of an enzyme and metallic complex are also treated in this Special Issue. The article by Christian Herrero et al. describes the development of the Mn(TpCPP)-Xln10A artificial metalloenzyme, obtained by non-covalent insertion of Mn(III)-meso-tetrakis(p-carboxyphenyl)porphyrin [Mn(TpCPP), 1-Mn] into xylanase 10A from Streptomyces lividans (Xln10A). The complex was found able to catalyze the selective photo-induced oxidation of organic substrates in the presence of [RuII(bpy)3]2+ as a photosensitizer and [CoIII(NH3)5Cl]2+ as a sacrificial electron acceptor, using water as oxygen atom source. The two published reviews describe different subjects with interest in the fields of biocatalysis and mix metallic-biocatalysis, respectively. The review by Anika Scholtissek et al. describes the state-of-the-art regarding ene-reductases from the old yellow enzyme family (OYEs) to catalyze the asymmetric hydrogenation of activated alkenes to produce chiral products with industrial interest. The dependence of OYEs on pyridine nucleotide coenzyme can be avoided by using nicotinamide coenzyme mimetics. In the review, three main classes of OYEs are described and characterized. The review by Yajie Wang and Huimin Zhao highlights some of the recent examples in the past three years that combine transition metal catalysis with enzymatic catalysis. With recent advances in protein engineering, catalyst synthesis, artificial metalloenzymes, and supramolecular assembly, there is great potential to develop more sophisticated tandem chemoenzymatic processes for the synthesis of structurally complex chemicals. In conclusion, these nine publications give an overview of the possibilities of different catalysts, both traditional biocatalysts and hybrids with metals or organometallic complexes to be used in different processes—particularly in synthetic reactions—under very mild reaction conditions.

Biocatalysis and Pharmaceuticals: A Smart Tool for Sustainable Development

Author:
ISBN: 9783039217083 9783039217090 Year: Pages: 176 DOI: 10.3390/books978-3-03921-709-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Biotechnology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Biocatalysis, that is, the use of biological catalysts (enzymes, cells, etc.) for the preparation of highly valuable compounds is undergoing a great development, being considered an extremely sustainable approach to undertaking environmental demands. In this scenario, this book illustrates the versatility of applied biocatalysis for the preparation of drugs and other bioactive compounds through the presentation of different research articles and reviews, in which several authors describe the most recent developments in this appealing scientific area. By reading the excellent contributions gathered in this book, it is possible to have an updated idea about new advances and possibilities for a new exciting future.

State-of-the-art Laser Gas Sensing Technologies

Authors: --- ---
ISBN: 9783039283989 9783039283996 Year: Pages: 278 DOI: 10.3390/books978-3-03928-399-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Trace gas sensing technologies are widely used in many applications, such as environmental monitoring, life science, medical diagnostics, and planetary exploration. On the one hand, laser sources have developed greatly due to the rapid development of laser media and laser techniques in recent years. Some novel lasers such as solid-state, diode, and quantum cascade lasers have experienced significant progress. At present, laser wavelengths can cover the range from ultraviolet to terahertz, which could promote the development of laser gas sensing technologies significantly. On the other hand, some new gas sensing methods have appeared, such as photothermal spectroscopy and photoacoustic spectroscopy. Laser spectroscopy-based gas sensing techniques have the advantages of high sensitivity, non-invasiveness, and allowing in situ, real-time observation. Due to the rapid and recent developments in laser source as well as the great merits of laser spectroscopy-based gas sensing techniques, this book aims to provide an updated overview of the state-of-the-art laser gas sensing technologies.

Keywords

tunable mid-infrared solid-state laser --- thermal control --- all-fiber laser --- thermoelectric cooling --- finite-element analysis --- optical parametric oscillator --- Tm,Ho:LuVO4 laser --- PQS --- graphene saturable absorber --- mid-infrared --- single-frequency --- optical parametric oscillator (OPO) --- MgO:PPLN crystal --- continuous-wave (CW) --- diffuse integrating cavity --- TDLAS --- gas detection --- non-linearity --- quartz-enhanced photoacoustic spectroscopy --- quartz tuning fork --- gas sensing --- detection limit --- laser spectroscopy --- practical applications --- real-time observation --- optical sensing --- stokes vectors --- information processing technology --- tunable laser absorption spectroscopy --- mid-infrared fingerprint spectrum --- broadband spectrum --- trace gas detection --- wavelength modulation spectroscopy --- quantum cascade lasers --- interband cascade lasers --- carbon dioxide monitoring --- absorption spectroscopy --- temperature compensation --- wavelength modulation --- methane detection --- support vector machine --- chicken swarm optimization --- algorithm --- concentration prediction --- combustion diagnostic --- femtosecond laser --- two-photon femtosecond laser-induced fluorescence --- femtosecond laser-induced breakdown spectroscopy --- femtosecond laser electronic excitation tagging --- filament-induced nonlinear spectroscopy --- femtosecond laser-induced plasma spectroscopy --- hollow-core photonic crystal fiber --- GRIN fiber probe --- coupling efficiency --- gas sensing --- near-infrared --- C2H2 detection --- TDLAS --- time division multiplexing differential modulation --- a multi-reflection chamber --- laser absorption spectroscopy (LAS) --- combustion sensing --- direct absorption spectroscopy (DAS) --- wavelength modulation spectroscopy (WMS) --- design optimization --- noise reduction algorithms --- methane --- tunable diode laser --- wavelength modulation spectroscopy --- frequency modulation spectroscopy --- two-tone frequency modulation spectroscopy --- photothermal spectroscopy --- gas sensing --- detection limit --- laser spectroscopy --- practical applications --- intracavity gas detection --- interferometric gas detection --- deep-sea natural gas hydrate exploration --- 13CO2/12CO2 isotope ratio detection --- TDLAS technique --- mid-infrared ICL --- n/a

Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions

Author:
ISBN: 9783038979920 9783038979937 Year: Pages: 212 DOI: 10.3390/books978-3-03897-993-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Oral health is general health. If the oral cavity is kept healthy, the whole body is always healthy. Bacteria in the oral cavity do not stay in the oral cavity, but rather they travel throughout the body and can induce various diseases. Periodontal pathogens are involved in tooth loss. The number of remaining teeth decreases with age. People with more residual teeth can bite food well and live longer with lower incidence of dementia. There are many viruses in the oral cavity that also cause various diseases. Bacteria and viruses induce and aggravate inflammation, and therefore should be removed from the oral cavity. In the natural world, there are are many as yet undiscovered antiviral, antibacterial and anti-inflammatory substances. These natural substances, as well as chemically modified derivatives, help our oral health and lead us to more fulfilling, high quality lives. This Special Issue, entitled “Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions”, was written by specialists from a diverse variety of fields. It serves to provide readers with up-to-date information on incidence rates in each age group, etiology and treatment of stomatitis, and to investigate the application of such treatments as oral care and cosmetic materials.

Keywords

metabolomics --- oral cell --- benzaldehyde --- eugenol --- inflammation --- cytotoxicity --- stomatitis --- recurrent aphthous stomatitis --- oral lichen planus --- CCN2 --- glucocorticoids --- alkaloids --- anti-human immunodeficiency virus (HIV) --- antiviral --- natural product --- human virus --- inflammatory disease --- stomatitis --- periodontitis --- anti-osteoclast activity --- cepharanthin --- herbal medicine --- natural product --- arachidonic acid cascade --- allergic rhinitis --- mice --- quercetin --- thioredoxin --- nasal epithelial cell --- production --- increase --- in vitro --- in vivo --- nutritionally variant streptococci --- antimicrobial susceptibilities --- oral microbiota --- infective endocarditis --- kampo formula --- traditional Japanese herbal medicine --- stomatitis --- mucositis --- Hangeshashinto --- polyphenol --- chromone --- lignin-carbohydrate complex --- alkaline extract --- Kampo medicine --- glucosyltransferase --- angiotensin II blocker --- QSAR analysis --- oral diseases --- dental application --- Chinese herbal remedies --- stomatitis --- periodontitis --- Kampo --- traditional medicine --- Jixueteng --- Juzentaihoto --- technical terms --- gargle --- tongue diagnosis --- mastic --- pathogenic factors --- quantitative structure-activity relationship --- machine learning --- random forest --- natural products --- tumour-specificity --- Kampo medicine --- constituent plant extract --- stomatitis --- oral inflammation --- quantitative structure-activity relationship (QSAR) analysis --- metabolomics

Intermittency and Self-Organisation in Turbulence and Statistical Mechanics

Author:
ISBN: 9783039211081 9783039211098 Year: Pages: 298 DOI: 10.3390/books978-3-03921-109-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

There is overwhelming evidence, from laboratory experiments, observations, and computational studies, that coherent structures can cause intermittent transport, dramatically enhancing transport. A proper description of this intermittent phenomenon, however, is extremely difficult, requiring a new non-perturbative theory, such as statistical description. Furthermore, multi-scale interactions are responsible for inevitably complex dynamics in strongly non-equilibrium systems, a proper understanding of which remains a main challenge in classical physics. As a remarkable consequence of multi-scale interaction, a quasi-equilibrium state (the so-called self-organisation) can however be maintained. This special issue aims to present different theories of statistical mechanics to understand this challenging multiscale problem in turbulence. The 14 contributions to this Special issue focus on the various aspects of intermittency, coherent structures, self-organisation, bifurcation and nonlocality. Given the ubiquity of turbulence, the contributions cover a broad range of systems covering laboratory fluids (channel flow, the Von Kármán flow), plasmas (magnetic fusion), laser cavity, wind turbine, air flow around a high-speed train, solar wind and industrial application.

Multiscale Turbulent Transport

Authors: ---
ISBN: 9783039282128 9783039282135 Year: Pages: 210 DOI: 10.3390/books978-3-03928-213-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Turbulent transport is currently a prominent and ongoing investigation subject at the interface of methodologies from theory to numerical simulations and experiments, and it covers several spatiotemporal scales. Mathematical analysis, physical modelling, and engineering applications represent different facets of a classical, long-standing problem that is still far from being thoroughly comprehended. The goal of this Special Issue is to outline recent advances of such subjects as multiscale analysis in turbulent transport processes, Lagrangian and Eulerian descriptions of turbulence, advection of particles and fields in turbulent flows, ideal or nonideal turbulence (unstationary/inhomogeneous/anisotropic/compressible), turbulent flows in biofluid mechanics and magnetohydrodynamics, and the control and optimization of turbulent transport. The SI is open to regular articles, review papers focused on the state of the art and the progress made over the last few years, and new research trends.

Recent Advances in Biocatalysis and Metabolic Engineering for Biomanufacturing

Author:
ISBN: 9783039215744 9783039215751 Year: Pages: 278 DOI: 10.3390/books978-3-03921-575-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Biotechnology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The use of biocatalysts, including enzymes and metabolically engineered cells, has attracted a great deal of attention in the chemical and bio-industry, because biocatalytic reactions can be conducted under environmentally-benign conditions and in more sustainable ways. The catalytic efficiency and chemo-, regio-, and stereo-selectivity of enzymes can be enhanced and modulated using protein engineering. Metabolic engineering seeks to enhance cellular biosynthetic productivity of target metabolites via controlling and redesigning metabolic pathways using multi-omics analysis, genome-scale modeling, metabolic flux control, and reconstruction of novel pathways. The aim of this book is to cover the recent advances in biocatalysis and metabolic engineering for biomanufacturing of biofuels, chemicals, biomaterials, and pharmaceuticals. Reviews and original research articles on the development of new strategies to improve the catalytic efficiency of enzymes, biosynthetic capability of cell factories, and their applications in production of various bioproducts and chemicals are included.

Keywords

artificial self-sufficient P450 --- bioplastics --- dodecanoic acid --- Nylon 12 --- ?-aminododecanoic acid --- immobilization --- fluorescein diacetate --- polyurethane foam --- biofilm --- total enzymatic activity --- biocatalysis --- Combi-CLEAs --- cascade reactions --- immobilization --- Myceliophthora --- glyoxal oxidase --- 5-hydroxymethylfurfural --- aerobic methane bioconversion --- bioreactor --- string film reactor --- mass transfer performance --- cross-linked enzyme aggregate --- amyloglucosidase --- magnetic nanoparticles --- bovine serum albumin --- polyethyleneimine --- starch hydrolysis --- Eversa --- interfacial activation --- lipase immobilization --- enzyme stabilization --- enzyme modulation --- metabolic engineering --- synthetic biology --- 3-hydroxypropionic acid --- microbial production --- fatty acid synthesis --- acetate --- redox enzymes --- FTIR spectroscopy --- small molecules --- Corynebacterium glutamicum --- Pvgb --- tunable expression system --- expression vectors --- synthetic biology --- Vitreoscilla --- vgb --- biocatalysts --- biocatalytic reaction --- Methylosinus sporium strain 5 --- soluble methane monooxygenase --- C–H activation --- O2 activation --- synthetic biology --- metabolic engineering --- microbial cell factory --- synthetic metabolic pathways --- mannose --- magnetic nanoparticles --- immobilization --- whole cell --- specific recognition --- 12-hydroxydodecanoic acid --- dodecanoic acid --- CYP153A --- whole-cell biotransformation --- Candida antarctica Lipase B --- transesterification --- polymer functionalization --- tetraethylene glycol --- poly(ethylene glycol) --- hydrogenase --- bio-hydrogen --- chemicals addition --- review --- (?)-?-bisabolol --- mevalonate (MVA) --- mevalonate kinase 1 --- Methanosarcina mazei --- fed-batch fermentation --- monoterpene --- prokaryotic microbial factory --- metabolic engineering --- MEP pathway --- MEV pathway --- n/a

Optoelectronic Nanodevices

Author:
ISBN: 9783039286966 / 9783039286973 Year: Pages: 338 DOI: 10.3390/books978-3-03928-697-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

During the last decade, novel graphene related materials (GRMs), perovskites, as well as metal oxides and other metal nanostructures have received the interest of the scientific community. Due to their extraordinary physical, optical, thermal, and electrical properties, which are correlated with their 2D ultrathin atomic layer structure, large interlayer distance, ease of functionalization, and bandgap tunability, these nanomaterials have been applied in the development or the improvement of innovative optoelectronic applications, as well as the expansion of theoretical studies and simulations in the fast-growing fields of energy (photovoltaics, energy storage, fuel cells, hydrogen storage, catalysis, etc.), electronics, photonics, spintronics, and sensing devices. The continuous nanostructure-based applications development has provided the ability to significantly improve existing products and to explore the design of materials and devices with novel functionalities. This book demonstrates some of the most recent trends and advances in the interdisciplinary field of optoelectronics. Most articles focus on light emitting diodes (LEDs) and solar cells (SCs), including organic, inorganic, and hybrid configurations, whereas the rest address photodetectors, transistors, and other well-known dynamic optoelectronic devices. In this context, this exceptional collection of articles is directed at a broad scientific audience of chemists, materials scientists, physicists, and engineers, with the goals of highlighting the potential of innovative optoelectronic applications incorporating nanostructures and inspiring their realization.

Keywords

localized surface plasmon --- green LED --- cathodoluminescence --- FDTD --- NiCo2S4 nanotubes --- Ti porous film --- quantum dot --- solar cells --- counter electrode --- metasurfaces --- orthogonal polarization --- high-efficiency --- polarization analyzer --- green LEDs --- InGaN/GaN superlattice --- V-pits --- external quantum efficiency --- PeLEDs --- OAB --- perovskite --- quantum confinement effect --- transparent electrode --- Ag film --- nucleation layer --- organic solar cell --- graphene oxide --- oxidation --- photodetector --- light-emitting diodes --- quantum dots --- stability --- color-conversion efficiency --- photoluminescence --- p-type InGaN --- graded indium composition --- hole injection --- quantum efficiency --- green LED --- 2D perovskite --- controllable synthesis --- flexible substrate --- photodetector --- photoelectric performance --- photodetector --- organic --- photomultiplication --- tunneling --- external quantum efficiency --- liquid crystals --- metasurfaces --- plasmonics --- actively tunable nanodevices --- solvent --- compact --- smooth --- perovskite solar cells --- indium nanoparticles (In NPs) --- textured silicon solar cells --- antireflective coating (ARC) --- plasmonic forward scattering --- InN/p-GaN heterojunction --- interface --- photovoltaics --- GaN --- LED --- nano-grating --- metamaterials --- mid infrared --- graphene split-ring --- gold split-ring --- electromagnetically induced transparency effect --- transparent conductive electrode --- Ga2O3 --- AlGaN-based ultraviolet light-emitting diode --- transmittance --- sheet resistance --- electrowetting --- tunable absorbers --- subwavelength metal grating --- plasmon resonance --- field emission --- graphene --- reduced graphene oxide --- polymer composites --- graphene ink --- cold cathode --- Fowler–Nordheim --- CdTe microdots --- Schottky barrier --- photodetector --- piezo-phototronic effect --- UV LEDs --- double-layer ITO --- pinhole pattern --- current spreading --- light output power --- flip-chip mini-LED --- prism-structured sidewall --- waveguide photons --- light extraction --- erbium --- silicon transistor --- photocurrent --- colorimetry --- excitation wavelength --- light-emitting diode --- quantum dots --- ternary organic solar cells --- graphene ink --- functionalization --- air-processed --- cascade effect --- charge transfer --- n/a

Molecular Computing and Bioinformatics

Authors: --- ---
ISBN: 9783039211951 9783039211968 Year: Pages: 390 DOI: 10.3390/books978-3-03921-196-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Biotechnology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This text will provide the most recent knowledge and advances in the area of molecular computing and bioinformatics. Molecular computing and bioinformatics have a close relationship, paying attention to the same object but working towards different orientations. The articles will range from topics such as DNA computing and membrane computing to specific biomedical applications, including drug R&D and disease analysis.

Keywords

prostate cancer --- Mycoplasma hominis --- endoplasmic reticulum --- systems biology --- protein targeting --- biomedical text mining --- big data --- Tianhe-2 --- parallel computing --- load balancing --- bacterial computing --- bacteria and plasmid system --- Turing universality --- recursively enumerable function --- miRNA biogenesis --- structural patterns --- DCL1 --- protein–protein interaction (PPI) --- clustering --- protein complex --- penalized matrix decomposition --- avian influenza virus --- interspecies transmission --- amino acid mutation --- machine learning --- Bayesian causal model --- causal direction learning --- K2 --- brain storm optimization --- line graph --- Cartesian product graph --- join graph --- atom-bond connectivity index --- geometric arithmetic index --- P-glycoprotein --- efflux ratio --- in silico --- machine learning --- hierarchical support vector regression --- absorption --- distribution --- metabolism --- excretion --- toxicity --- image encryption --- chaotic map --- DNA coding --- Hamming distance --- Stenotrophomonas maltophilia --- iron acquisition systems --- iron-depleted --- RAST server --- NanoString Technologies --- siderophores --- gene fusion data --- gene susceptibility prioritization --- evaluating driver partner --- gene networks --- drug-target interaction prediction --- machine learning --- drug discovery --- microRNA --- environmental factor --- structure information --- similarity network --- bioinformatics --- identification of Chinese herbal medicines --- biochip technology --- DNA barcoding technology --- DNA strand displacement --- cascade --- 8-bit adder/subtractor --- domain label --- Alzheimer’s disease --- gene coding protein --- sequence information --- support vector machine --- classification --- adverse drug reaction prediction --- heterogeneous information network embedding --- stacking denoising auto-encoder --- meta-path-based proximity --- Panax ginseng --- oligopeptide transporter --- flowering plant --- phylogeny --- transcription factor --- multiple interaction networks --- function prediction --- multinetwork integration --- low-dimensional representation --- dihydrouridine --- nucleotide physicochemical property --- pseudo dinucleotide composition --- RNA secondary structure --- ensemble classifier --- diabetes mellitus --- hypoxia-inducible factor-1? --- angiogenesis --- bone formation --- osteogenesis --- protein transduction domain --- membrane computing --- edge detection --- enzymatic numerical P system --- resolution free --- molecular computing --- molecular learning --- DNA computing --- self-organizing systems --- pattern classification --- machine learning --- laccase --- Brassica napus --- lignification --- stress --- molecular computing --- bioinformatics --- machine learning --- protein --- DNA --- RNA --- drug --- bio-inspired

Climate Variability and Climate Change Impacts on Land Surface, Hydrological Processes and Water Management

Authors: --- ---
ISBN: 9783039215072 9783039215089 Year: Pages: 460 DOI: 10.3390/books978-3-03921-508-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Environmental Sciences
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

During the last several decades, Earth´s climate has undergone significant changes due to anthropogenic global warming, and feedbacks to the water cycle. Therefore, persistent efforts are required to improve our understanding of hydrological processes and to engage in efficient water management strategies that explicitly consider changing environmental conditions. The twenty-four contributions in this book have broadly addressed topics across four major research areas: (1) Climate and land-use change impacts on hydrological processes, (2) hydrological trends and causality analysis faced in hydrology, (3) hydrological model simulations and predictions, and (4) reviews on water prices and climate extremes. The broad spectrum of international contributions to the Special Issue indicates that climate change impacts on water resources analysis attracts global attention. We hope that the collection of articles presented here can provide scientists, policymakers and stakeholders alike with insights that support sustainable decision-making in the face of climate change and increasingly scarce environmental resources.

Keywords

hydrological drought --- Three Gorges Dam --- GRACE --- compound extremes --- climate change --- multivariate distribution --- quantile regression --- indicator --- PUB --- rainfall-runoff experiments --- distributed hydrological model --- Hydro-Informatic Modelling System (HIMS) --- freshwater availability --- runoff --- simulated rainfall --- plot scale --- litter layer --- topsoil --- karst --- Yellow River Delta --- estuarine wetlands --- spatiotemporal change analysis --- remote sensing --- intra-annual climate change --- variation in percentage of flood-season precipitation --- natural streamflow variation --- contribution and sensitivity analysis --- Yellow River --- highland agricultural field area --- diffuse pollutant discharge --- multiple regression model --- climate change --- jackknife validation --- water security --- water pricing --- sustainable water management --- trends and patterns --- economics --- precipitation --- air temperature --- river discharge --- Mann-Kendall test --- Selenga river basin --- Lake Baikal basin --- Mongolia --- snowfall to precipitation ratio --- WRF model --- arid region --- Xinjiang --- water resources management --- climate change --- LULCC --- Budyko equation --- streamflow --- drought --- climate variability --- land surface change --- runoff --- Budyko framework --- elasticity coefficient --- Weihe River Basin --- flood --- streamflow --- CMIP5 --- climate change --- HEC-RAS --- trend analysis --- precipitation --- temperature --- eco-region --- Ethiopia --- Three Gorges Project --- dam --- runoff changes --- flood control --- Yangtze River --- benefits --- evapotranspiration --- Pan evaporation --- TFPW-MK --- Haihe River Basin --- hydrological simulation --- quantitative analysis --- SWAT model --- land use/cover change --- climate change --- scenario simulation --- Climate variability --- Large-scale climate indices --- Reservoir inflow forecasting --- Ensemble empirical mode decomposition --- Time series model --- Artificial intelligence model --- grid-based --- HRU-based --- SHM --- SWAT --- large scale basin --- climate change --- human activities --- power operations --- cascade joint operation chart --- inter-basin water transfer project --- climate change --- MATOPIBA agricultural frontier --- water security --- hydroclimatic analysis --- water conflicts --- average annual runoff --- runoff map --- hydrological model --- GIS --- DPR Korea --- streamflow reduction --- climate change --- coal mining --- SWCM --- coal mining concentrated watershed --- the Loess Plateau --- hydrology --- land cover --- land use and climate change --- water resources management --- macro scale modeling --- climate variability --- climate change --- land use change --- hydrological processes --- trends --- water management --- model --- predictions

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (14)


License

CC by-nc-nd (14)


Language

english (12)

eng (2)


Year
From To Submit

2020 (4)

2019 (10)