Search results: Found 11

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
Humidity Sensors. Advances in Reliability, Calibration and Application

Authors: --- ---
ISBN: 9783039211227 9783039211234 Year: Pages: 198 DOI: 10.3390/books978-3-03921-123-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Humidity detection has deep significance for the scientific research surrounding medical care and human performance, and the industrial development of agriculture, geography and automated instruments. This special issue aims to showcase some of the advancements in humidity sensor design and calibration, and its applications. The selected papers cover a variety of humidity sensor-related topics including material science, chemistry and industrial engineering. Through dedicated contributions from peer reviewers and the editorial team, this book aims to offers reader some insight into the field of humidity sensor development and use.

Development of CMOS-MEMS/NEMS Devices

Authors: ---
ISBN: 9783039210688 9783039210695 Year: Pages: 165 DOI: 10.3390/books978-3-03921-069-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Micro and nano-electro-mechanical system (M/NEMS) devices constitute key technological building blocks to enable increased additional functionalities within Integrated Circuits (ICs) in the More-Than-Moore era, as described in the International Technology Roadmap for Semiconductors. The CMOS ICs and M/NEMS dies can be combined in the same package (SiP), or integrated within a single chip (SoC). In the SoC approach the M/NEMS devices are monolithically integrated together with CMOS circuitry allowing the development of compact and low-cost CMOS-M/NEMS devices for multiple applications (physical sensors, chemical sensors, biosensors, actuators, energy actuators, filters, mechanical relays, and others). On-chip CMOS electronics integration can overcome limitations related to the extremely low-level signals in sub-micrometer and nanometer scale electromechanical transducers enabling novel breakthrough applications. This Special Issue aims to gather high quality research contributions dealing with MEMS and NEMS devices monolithically integrated with CMOS, independently of the final application and fabrication approach adopted (MEMS-first, interleaved MEMS, MEMS-last or others).]

Nanostructure Based Sensors for Gas Sensing: from Devices to Systems

Authors: ---
ISBN: 9783039216369 9783039216376 Year: Pages: 86 DOI: 10.3390/books978-3-03921-637-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The development of solid state gas sensors based on microtransducers and nanostructured sensing materials is the key point in the design of portable measurement systems able to reach sensing and identification performance comparable with analytical ones. In such a context several efforts must be spent of course in the development of the sensing material, but also in the choice of the transducer mechanism and its structure, in the electrical characterization of the performance and in the design of suitable measurement setups. This call for papers invites researchers worldwide to report about their novel results on the most recent advances and overview in design and measurements for applications in gas sensors, along with their relevant features and technological aspects. Original research papers are welcome (but not limited) on all aspects that focus on the most recent advances in: (i) basic principles and modeling of gas and VOCs sensors; (ii) new gas sensor principles and technologies; (iii) Characterization and measurements methodologies; (iv) transduction and sampling systems; (vi) package optimization; (vi) gas sensor based systems and applications.

Plasma based Synthesis and Modification of Nanomaterials

Author:
ISBN: 9783039213955 / 9783039213962 Year: Pages: 160 DOI: 10.3390/books978-3-03921-396-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This book, entitled “Plasma-Based Synthesis and Modification of Nanomaterials” is a collection of nine original research articles devoted to the application of different atmospheric pressure (APPs) and low-pressure (LPPs) plasmas for the synthesis or modification of various nanomaterials (NMs) of exceptional properties. These articles also show the structural and morphological characterization of the synthesized NMs and their further interesting and unique applications in different areas of science and technology. The readers interested in the capabilities of plasma-based treatments will quickly be convinced that APPs and LPPs enable one to efficiently synthesize or modify differentiated NMs using a minimal number of operations. Indeed, the presented procedures are eco-friendly and usually involve single-step processes, thus considerably lowering labor investment and costs. As a result, the production of new NMs and their functionalization is more straightforward and can be carried out on a much larger scale compared to other methods and procedures involving complex chemical treatments and processes. The size and morphology, as well as the structural and optical properties of the resulting NMs are tunable and tailorable. In addition to the desirable and reproducible physical dimensions, crystallinity, functionality, and spectral properties of the resultant NMs, the NMs fabricated and/or modified with the aid of APPs are commonly ready-to-use prior to their specific applications, without any initial pre-treatments.

MEMS Accelerometers

Authors: --- ---
ISBN: 9783038974147 9783038974154 Year: Pages: 252 DOI: 10.3390/books978-3-03897-415-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc.

Keywords

low-temperature co-fired ceramic (LTCC) --- capacitive accelerometer --- wireless --- process optimization --- performance characterization --- MEMS accelerometer --- mismatch of parasitic capacitance --- electrostatic stiffness --- high acceleration sensor --- piezoresistive effect --- MEMS --- micro machining --- turbulent kinetic energy dissipation rate --- probe --- microelectromechanical systems (MEMS) piezoresistive sensor chip --- Taguchi method --- marine environmental monitoring --- accelerometer --- frequency --- acceleration --- heat convection --- motion analysis --- auto-encoder --- dance classification --- deep learning --- self-coaching --- wavelet packet --- classification of horse gaits --- MEMS sensors --- gait analysis --- rehabilitation assessment --- body sensor network --- MEMS accelerometer --- electromechanical delta-sigma --- built-in self-test --- in situ self-testing --- digital resonator --- accelerometer --- activity monitoring --- regularity of activity --- sleep time duration detection --- indoor positioning --- WiFi-RSSI radio map --- MEMS-IMU accelerometer --- zero-velocity update --- step detection --- stride length estimation --- field emission --- hybrid integrated --- vacuum microelectronic --- cathode tips array --- interface ASIC --- micro-electro-mechanical systems (MEMS) --- delaying mechanism --- safety and arming system --- accelerometer --- multi-axis sensing --- capacitive transduction --- inertial sensors --- three-axis accelerometer --- micromachining --- miniaturization --- stereo visual-inertial odometry --- fault tolerant --- hostile environment --- MEMS-IMU --- mode splitting --- Kerr noise --- angular-rate sensing --- whispering-gallery-mode --- optical microresonator --- three-axis acceleration sensor --- MEMS technology --- sensitivity --- L-shaped beam --- n/a

MEMS Technology for Biomedical Imaging Applications

Authors: ---
ISBN: 9783039216048 9783039216055 Year: Pages: 218 DOI: 10.3390/books978-3-03921-605-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community.

Keywords

tilted microcoil --- electromagnetically-driven --- surface micromachining --- polyimide capillary --- MEMS --- ego-motion estimation --- indoor navigation --- monocular camera --- scale ambiguity --- wearable sensors --- photoacoustic --- microelectromechanical systems (MEMS) --- miniaturized microscope --- lead-free piezoelectric materials --- high frequency ultrasonic transducer --- needle-type --- high spatial resolution --- ultrahigh frequency ultrasonic transducer --- Si lens --- tight focus --- finite element simulation --- low noise amplifier (LNA) --- noise figure --- smart hydrogels --- bio-sensors --- chemo-sensor --- electrochemical sensors --- transduction techniques --- near-field microwave --- microwave resonator --- microwave remote sensing --- potentiometric sensor --- gold nanoparticles --- metal oxide field-effect transistor --- chemo-FET --- bio-FET --- photoacoustic imaging --- microelectromechanical systems (MEMS) --- MEMS scanning mirror --- micromachined US transducer --- microring resonator --- acoustic delay line --- MEMS mirror --- Lissajous scanning --- pseudo-resonant --- sensing --- imaging --- display --- MEMS actuators --- microendoscopy --- confocal --- two-photon --- wide-filed imaging --- photoacoustic --- fluorescence --- scanner --- capacitive micromachined ultrasonic transducer (CMUT) --- acoustics --- micromachining --- capacitive --- transducer --- modelling --- fabrication --- 3D Printing --- piezoelectric array --- ultrasonic transducer --- ultrasonic imaging --- micro-optics --- bioimaging --- microtechnology --- microelectromechanical systems (MEMS) --- in vitro --- in vivo --- cantilever waveguide --- electrostatic actuator --- non-resonating scanner --- optical scanner --- push-pull actuator --- rib waveguide --- n/a

Selected Papers from the 8th Symposium on Micro-Nano Science and Technology on Micromachines

Authors: --- ---
ISBN: 9783038977285 9783038977292 Year: Pages: 154 DOI: 10.3390/books978-3-03897-729-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue presents selected papers from the 8th

Innovative Technologies and Services for Smart Cities

Authors: ---
ISBN: 9783039211814 9783039211821 Year: Pages: 214 DOI: 10.3390/books978-3-03921-182-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

A smart city is a modern technology-driven urban area which uses sensing devices, information, and communication technology connected to the internet of things (IoTs) for the optimum and efficient utilization of infrastructures and services with the goal of improving the living conditions of citizens. Increasing populations, lower budgets, limited resources, and compatibility of the upgraded technologies are some of the few problems affecting the implementation of smart cities. Hence, there is continuous advancement regarding technologies for the implementation of smart cities. The aim of this Special Issue is to report on the design and development of integrated/smart sensors, a universal interfacing platform, along with the IoT framework, extending it to next-generation communication networks for monitoring parameters of interest with the goal of achieving smart cities. The proposed universal interfacing platform with the IoT framework will solve many challenging issues and significantly boost the growth of IoT-related applications, not just in the environmental monitoring domain but in the other key areas, such as smart home, assistive technology for the elderly care, smart city with smart waste management, smart E-metering, smart water supply, intelligent traffic control, smart grid, remote healthcare applications, etc., signifying benefits for all countries.

Selected Papers from the 9th World Congress on Industrial Process Tomography

Authors: --- ---
ISBN: 9783039282487 9783039282494 Year: Pages: 262 DOI: 10.3390/books978-3-03928-249-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Industrial process tomography (IPT) is becoming an important tool for Industry 4.0. It consists of multidimensional sensor technologies and methods that aim to provide unparalleled internal information on industrial processes used in many sectors. This book showcases a selection of papers at the forefront of the latest developments in such technologies.

Keywords

wire-mesh --- flow distribution --- subsea gas–liquid separation --- two-phase flow --- cyclonic chamber --- machine learning --- inverse problem --- electrical impedance tomography --- image reconstruction --- industrial tomography --- electrical impedance tomography --- ultrasound tomography --- dual-modality imaging --- lagrange-newton method --- electrical capacitance tomography --- industrial process tomography --- direct image reconstruction --- Calderon’s method --- truncation radius --- open electrical impedance tomography --- sensor design --- conformal transformation --- focusing sensor --- open domain imaging --- simulated inductor technique --- process tomography --- contactless electrical tomography --- grouting duct --- capacitive sensor --- cross section distribution detecting --- measurement --- drying process --- Electrical Impedance Tomography --- impedance spectroscopy --- chokeberry --- EIDORS --- Magnetic Induction Tomography --- imaging defects --- imaging deformations --- total variation algorithms --- threshold-differencing algorithms --- continuous casting --- imaging techniques --- multiphase flow --- nanoparticles --- enhanced oil recovery --- tomography --- sand-pack flooding --- electrical resistance tomography --- smart water meter --- wastewater management --- measurement data analysis --- targeted crowdsourcing --- flow investigation tool --- X-ray process tomography --- radiography imaging --- 3D --- ECT --- 3D-printing --- sensors --- modeling --- FPGA --- high-speed EIT --- frequency division multiplexing --- ONE-SHOT --- EIDORS --- n/a

Soft Material-Enabled Electronics for Medicine, Healthcare, and Human-Machine Interfaces

Authors: ---
ISBN: 9783039282821 9783039282838 Year: Pages: 244 DOI: 10.3390/books978-3-03928-283-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Soft material-enabled electronics offer distinct advantage, over conventional rigid and bulky devices, for numerous wearable and implantable applications. Soft materials allow for seamless integration with skin and tissues due to enhanced mechanical flexibility and stretchability. Wearable devices, such as sensors, offer continuous, real-time monitoring of biosignals and movements, which can be applied in rehabilitation and diagnostics, among other applications. Soft implantable electronics offer similar functionalities, but with improved compatibility with human tissues. Biodegradable soft implantable electronics are also being developed for transient monitoring, such as in the weeks following surgery. To further advance soft electronics, materials, integration strategies, and fabrication techniques are being developed. This paper reviews recent progress in these areas, toward the development of soft material-enabled electronics for medicine, healthcare, and human-machine interfaces.

Keywords

soft materials --- flexible hybrid electronics --- wearable electronics --- stretchable electronics --- medicine --- healthcare --- human-machine interfaces --- point-of-care testing --- soft material-based channel --- PDMS optical filter --- smartphone-based biosensor --- chromogenic biochemical assay --- naked-eye detection --- implantable materials --- low-profile bioelectronics --- micro/nanofabrication --- medical devices --- biodegradable materials --- miniaturization --- bioresorbable electronics --- printing electronics techniques --- conductive inks --- flexible electronics --- carbon-based nano-materials --- bio-integrated electronics --- hardening sponge --- MR sponge --- 6 degrees-of-freedom (6-DOF) MR haptic master --- RMIS (robot-assisted minimally invasive surgery) --- implantable devices --- optical waveguides --- optical fibers --- biocompatible --- biodegradable --- electroactive hydrogel --- polyvinyl alcohol --- cellulose nanocrystals --- freeze–thaw method --- actuation --- biodegradable electronics --- transient electronics --- soft biomedical electronics --- biodegradable materials --- silver nanowire --- graphene oxide --- polymer-dispersed liquid crystal --- smart window --- hybrid transparent conductive electrode --- conductive textile --- capacitive pressure sensor --- gait --- monitoring --- phase coordination index --- stretchable --- polydimethylsiloxane --- liquid-metal --- capacitor --- dysphagia --- swallowing --- tongue --- nitinol --- superelastic --- prosthesis --- soft materials --- wearable electronics --- implantable electronics --- biodegradable --- medical devices --- diagnostics --- health monitoring --- human-machine interfaces

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (11)


License

CC by-nc-nd (11)


Language

english (10)

eng (1)


Year
From To Submit

2020 (4)

2019 (7)