Search results: Found 2

Listing 1 - 2 of 2
Sort by
Emerging Advances in Petrophysics. Porous Media Characterization and Modeling of Multiphase Flow

Authors: --- --- ---
ISBN: 9783038977940 9783038977957 Year: Pages: 258 DOI: 10.3390/books978-3-03897-795-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Geophysics and Geomagnetism
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

Due to the influence of pore-throat size distribution, pore connectivity, and microscale fractures, the transport, distribution, and residual saturation of fluids in porous media are difficult to characterize. Petrophysical methods in natural porous media have attracted great attention in a variety of fields, especially in the oil and gas industry. A wide range of research studies have been conducted on the characterization of porous media covers and multiphase flow therein. Reliable approaches for characterizing microstructure and multiphase flow in porous media are crucial in many fields, including the characterization of residual water or oil in hydrocarbon reservoirs and the long-term storage of supercritical CO2 in geological formations. This book gathers together 15 recent works to emphasize fundamental innovations in the field and novel applications of petrophysics in unconventional reservoirs, including experimental studies, numerical modeling (fractal approach), and multiphase flow modeling/simulations. The relevant stakeholders of this book are authorities and service companies working in the petroleum, subsurface water resources, air and water pollution, environmental, and biomaterial sectors.

Keywords

Wilkins equation --- non-laminar flow --- turbulence modelling --- porous media --- oil tanker --- temperature drop --- oscillating motion --- numerical simulation --- soil-water characteristic curve --- initial void ratio --- air-entry value --- fractal dimension --- fractal model --- oil properties --- diffusion coefficient --- supercritical CO2 --- Peng-Robinson equation of state (PR EOS) --- CT --- digital rock --- microfractures --- Lattice Boltzmann method --- pore-scale simulations --- tight sandstone --- pore structure --- multifractal --- classification --- Ordos Basin --- loose media --- coal --- porosity --- true density --- bulk density --- overburden pressure --- particle size --- tight conglomerate --- fracture characterization and prediction --- fractal method --- salt rock --- creep --- damage --- fractional derivative --- acoustic emission --- marine gas hydrate --- submarine landslide --- greenhouse gas emission --- lifecycle management --- hazard prevention --- multilayer reservoir --- interlayer interference --- producing degree --- seepage resistance --- wellbore multiphase flow --- inclined angle --- liquid rate --- gas rate --- pressure drawdown model with new coefficients --- base-level cycle --- pore structure --- mouth bar sand body --- Huanghua Depression --- isotopic composition --- methane --- gas hydrate --- South China Sea --- Bakken Formation --- pore structure --- controlling factors --- low-temperature nitrogen adsorption --- petrophysics --- fractal porous media --- unconventional reservoirs --- multiphase flow

Seedling Production and Field Performance of Seedlings

Authors: ---
ISBN: 9783039212552 9783039212569 Year: Pages: 192 DOI: 10.3390/books978-3-03921-256-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Rapid establishment of seedlings in forest regeneration or afforestation sites after planting is a prerequisite for a successful reforestation. Seedling survival after outplanting can be improved by using high-quality seedling material. Seedling quality consists of several features, such as genetic source, morphological properties, nutritional status, stress resistance, and vitality of the seedlings. Field performance of the seedlings is a complex process which can be affected by many nursery and silvicultural practices. Nursery cultural practices strongly affect seedling quality, which is generally at its highest level during the growth period at the nursery. Afterwards, when the seedlings are transported from the nursery to the planting site (including seedling storage, handling, shipping, and planting practices), the quality of seedlings can only remain the same or decline. To ensure successful regeneration, it is important to produce seedlings that retain their high quality until planting, and to establish them quickly in the forest regeneration site.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

english (2)


Year
From To Submit

2019 (2)