Search results: Found 5

Listing 1 - 5 of 5
Sort by
Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450510 Year: Pages: 377 DOI: 10.3389/978-2-88945-051-0 Language: English
Publisher: Frontiers Media SA
Subject: Biotechnology --- General and Civil Engineering --- Botany --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.

Yeast Biotechnology

Author:
ISBN: 9783038424437 9783038424420 Year: Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2017-06-28 09:30:16
License:

Loading...
Export citation

Choose an application

Abstract

Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels, and biopharmaceuticals. Saccharomyces cerevisiae (brewers’ or bakers’ yeast) is the yeast species that is surely the most exploited by man. Saccharomyces is a top choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes. Today, diverse yeast species are explored for industrial applications. This Special Issue is focused on some recent developments of yeast biotechnology, i.e., bioethanol, wine and beer, and enzyme production. Additionally, the new field of yeast nanobiotechnology is introduced and reviewed.

Drug Metabolism, Pharmacokinetics and Bioanalysis

Authors: ---
ISBN: 9783038979166 9783038979173 Year: Pages: 230 DOI: 10.3390/books978-3-03897-917-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Drug metabolism/pharmacokinetics and drug interaction studies have been extensively carried out in order to secure the druggability and safety of new chemical entities throughout the development of new drugs. Recently, drug metabolism and transport by phase II drug metabolizing enzymes and drug transporters, respectively, as well as phase I drug metabolizing enzymes, have been studied. A combination of biochemical advances in the function and regulation of drug metabolizing enzymes and automated analytical technologies are revolutionizing drug metabolism research. There are also potential drug–drug interactions with co-administered drugs due to inhibition and/or induction of drug metabolic enzymes and drug transporters. In addition, drug interaction studies have been actively performed to develop substrate cocktails that do not interfere with each other and a simultaneous analytical method of substrate drugs and their metabolites using a tandem mass spectrometer. This Special Issue has the aim of highlighting current progress in drug metabolism/pharmacokinetics, drug interactions, and bioanalysis.

Keywords

procainamide --- N-acetylprocainamide --- ultra-high-pressure liquid chromatography --- rat --- plasma --- pharmacokinetics --- adalimumab --- immunoprecipitation --- liquid chromatography-quadrupole TOF MS --- bioanalysis --- GB3 --- Fabry disease --- LC-QTOF-MS/MS --- B6 --- 129-Glatm1Kul/J --- cytochrome P450 --- drug interaction --- liquid chromatography-tandem mass spectrometry --- organic anion transporting polypeptide --- pharmacokinetics --- Korean red ginseng extract --- metformin --- diabetes --- drug interaction --- pharmacokinetics --- efficacy --- ethyl glucuronide --- hair --- HPLC-MS/MS --- AUDIT score --- alcohol addiction --- eurycomanone --- Eurycoma longifolia --- bioavailability --- pharmacokinetic --- anthraquinone --- glycoside --- aglycone --- LC-MS/MS --- plasma --- protein precipitation --- loxoprofen --- CYP --- UGT --- human liver microsomes --- LC-HR/MS --- mematine --- drug interaction --- liquid chromatography-tandem mass spectrometry --- pharmacokinetics --- biopharmaceuticals --- drying technology --- protein stability --- bioavailability --- pharmacokinetics --- DA-9805 --- saikosaponin a --- paeonol --- imperatorin --- pharmacokinetics --- brain distribution --- Osthenol --- CYP --- UGT --- human liver microsomes --- glucuronidation --- Stauntonia hexaphylla leaf extract --- YRA-1909 --- pharmacokinetics --- chlorogenic acid --- neochlorogenic acid --- cryptochlorogenic acid --- caffeic acid --- caffeic acid O-glucuronides --- LC-MS/MS --- aceclofenac --- diclofenac --- esomeprazole --- pharmacokinetics --- gastric ulcer --- acetyl tributyl citrate --- pharmaceutical excipient --- pharmacokinetics --- metabolic stability --- plasma

Recent Development of Electrospinning for Drug Delivery

Authors: --- ---
ISBN: 9783039281404 9783039281411 Year: Pages: 206 DOI: 10.3390/books978-3-03928-141-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Several promising techniques have been developed to overcome the poor solubility and/or membrane permeability properties of new drug candidates, including different fiber formation methods. Electrospinning is one of the most commonly used spinning techniques for fiber formation, induced by the high voltage applied to the drug-loaded solution. With modifying the characteristics of the solution and the spinning parameters, the functionality-related properties of the formulated fibers can be finely tuned. The fiber properties (i.e., high specific surface area, porosity, and the possibility of controlling the crystalline–amorphous phase transitions of the loaded drugs) enable the improved rate and extent of solubility, causing a rapid onset of absorption. However, the enhanced molecular mobility of the amorphous drugs embedded into the fibers is also responsible for their physical–chemical instability. This Special Issue will address new developments in the area of electrospun nanofibers for drug delivery and wound healing applications, covering recent advantages and future directions in electrospun fiber formulations and scalability. Moreover, it serves to highlight and capture the contemporary progress in electrospinning techniques, with particular attention to the industrial feasibility of developing pharmaceutical dosage forms. All aspects of small molecule or biologics-loaded fibrous dosage forms, focusing on the processability, structures and functions, and stability issues, are included.

Keywords

electrospinning --- gentamicin sulfate --- polylactide-co-polycaprolactone --- drug release kinetics --- tissue engineering --- growth factor --- diabetic --- wound healing --- nanocomposite --- electrospinning --- coaxial spinning --- core-sheath nanofibers --- biomedical --- drug delivery --- electrospinning --- scale-up --- processability --- biopharmaceuticals --- oral dosage form --- grinding --- aceclofenac --- nanofiber --- electrospinning --- scanning electron microscopy --- fourier transform infrared spectroscopy --- differential scanning calorimetry --- nanotechnology --- biotechnology --- probiotics --- Lactobacillus --- Lactococcus --- electrospinning --- nanofibers --- drying --- local delivery --- viability --- antibacterial activity --- bacterial bioreporters --- drug release --- electrospinning --- microfibers --- nanofibers --- UV imaging --- wetting --- in situ drug release --- nanofibers --- electrospinning --- poorly water-soluble drug --- piroxicam --- hydroxypropyl methyl cellulose --- polydextrose --- scanning white light interferometry --- nanotechnology --- nanofibers --- traditional electrospinning --- ultrasound-enhanced electrospinning --- drug delivery system --- haemanthamine --- plant-origin alkaloid --- electrospinning --- amphiphilic nanofibers --- self-assembled liposomes --- physical solid-state properties --- drug release --- electrospinning --- PCL --- gelatin --- clove essential oil --- antibacterial --- biocompatibility --- artificial red blood cells --- electrospinning and electrospray --- pectin --- oligochitosan --- hydrogel --- microcapsules --- electrospinning --- wound dressings --- solvent casting --- 3D printing --- polymeric carrier --- n/a

Synthetic DNA and RNA Programming

Authors: ---
ISBN: 9783039217342 9783039217359 Year: Pages: 188 DOI: 10.3390/books978-3-03921-735-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Dear Colleagues, Synthetic biology is a broad and emerging discipline that capitalizes on recent advances in molecular biology, genetics, protein and RNA engineering and omics technologies. These technologies have transformed our ability to reveal the biology of the cell and the molecular basis of disease.

Keywords

fluorescent reporter --- live cell imaging --- microRNA quantification --- optogenetics --- small molecule drug screening --- Escherichia coli --- recombinant protein production --- gene overexpression --- growth effect --- ASKA collection --- codon bias --- branched-chain amino acids --- gene ontology --- genetic code expansion --- protein kinase B --- phosphoinositide dependent kinase 1 --- phosphoseryl-tRNA synthetase --- tRNASep --- alanyl-tRNA synthetase --- class II aminoacyl-tRNA synthetase --- expanded genetic code --- lysine acetylation --- posttranslational modification --- genetic code expansion --- transfer RNA --- synthetic biology --- non-canonical amino acids --- selenocysteine --- genetic code expansion --- release factor 1 --- amber stop codon suppression --- M. jannaschii orthogonal pair --- fluorescence-based screen --- cyclic peptides --- biopharmaceuticals --- mRNA display --- yeast two hybrid --- tRNASer --- mistranslation --- anticodon --- functional conservation --- alternative amino acid and nucleotide repertoires --- alternative core cellular chemistries --- biocontainment --- genetic firewall --- genetic isolation --- orthogonal central dogma of molecular biology --- synthetic life --- xenobiology --- genome engineering --- synthetic biology --- yeasts --- Metschnikowia --- genetic tools --- DNA delivery --- CUG-Ser --- reverse polymerization --- tRNA editing --- tRNA repair --- protein engineering --- synthetic biology --- tRNA --- misacylation --- indirect tRNA aminoacylation --- AspRS --- GluRS-like --- genetic code expansion --- genome synthesis --- genome editing --- microRNA --- protein modification --- RNA metabolism --- tRNA --- synthetic biology --- unnatural amino acids --- unnatural nucleotides

Listing 1 - 5 of 5
Sort by
Narrow your search