Search results: Found 7

Listing 1 - 7 of 7
Sort by
Recent Progress in Solid Dispersion Technology

Author:
ISBN: 9783039215010 9783039215027 Year: Pages: 204 DOI: 10.3390/books978-3-03921-502-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Amorphous solid dispersion (ASD) is a powerful formulation technology to improve oral absorption of poorly soluble drugs. Despite their being in existence for more than half a century, controlling ASD performance is still regarded as difficult because of ASD’s natural non-equilibrium. However, recent significant advances in ASD knowledge and technology may enable a much broader use of ASD technology. This Special Issue, which includes 3 reviews and 6 original articles, focuses on recent progresses in ASD technology in hopes of helping to accelerate developmental studies in the pharmaceutical industry. In striving for a deep understanding of ASD non-equilibrium behavior, the Special issue also delves into and makes progress in the theory of soft-matter dynamics.

Ceramic Conductors

Authors: ---
ISBN: 9783038979562 9783038979579 Year: Pages: 184 DOI: 10.3390/books978-3-03897-957-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of Crystals contains papers focusing on various properties of conducting ceramics. Multiple aspects of both the research and application of this group of materials have been addressed. Conducting ceramics are the wide group of mostly oxide materials which play crucial roles in various technical applications, especially in the context of the harvesting and storage of energy. Without ion-conducting oxides, such as yttria-stabilized zirconia, doped ceria devices such as solid oxide fuel cells would not exist, not to mention the wide group of other ion conductors which can be applied in batteries or even electrolyzers, besides fuel cells. The works published in this Special Issue tackle experimental results as well as general theoretical trends in the field of ceramic conductors, or electroceramics, as it is often referred to.

Structure and Mechanical Properties of Transition Group Metals, Alloys, and Intermetallic Compounds

Author:
ISBN: 9783039211463 9783039211470 Year: Pages: 222 DOI: 10.3390/books978-3-03921-147-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The aim of this Special Issue is to present the latest theoretical and experimental achievements concerning the mechanisms of microstructural change in metallic materials subject to different processing methods, and their effect on mechanical properties. It is my pleasure to present a series of compelling scientific papers written by scientists from the community of transition group metals, alloys, and intermetallic compounds.

Keywords

metal matrix composites --- laser metal deposition --- Inconel 625 --- additive manufacturing --- laser processing --- metal matrix composites --- Z-pin reinforcement --- delamination --- carbon fiber --- strengthening mechanisms --- severe plastic deformation (SPD) --- cross-channel extrusion (CCE) --- back pressure (BP) --- numerical simulation (FEM) --- physical modeling technique (PMT) --- metal–matrix composites (MMCs) --- carbon fiber --- mechanical properties --- z-pin reinforcement --- laminate --- titanium alloys --- high pressure torsion --- microhardness --- Cu–Ag alloy --- high-pressure torsion --- ultrafine microstructure --- phase dissolution --- microhardness --- friction stir welding --- heat treatment --- AA2519 --- microstructure --- fatigue --- fractography --- AZ91 --- magnesium alloys --- creep --- high pressure die casting --- additive manufacturing --- Ti-6Al-4V --- LENS --- mechanical characterization --- twin roll casting --- magnesium alloy --- calcium --- Mg-Zn-Al-Ca alloy --- texture --- flow curve --- processing map --- honeycomb structure --- additive manufacturing --- laser engineered net shaping --- LENS --- Ti6Al4V alloy --- energy absorption --- dynamic tests --- solidification thermal parameters --- Cu-Al-Ni-Fe bronze alloys --- hardness --- microhardness --- specific intermetallics --- MAX phase --- Ti3SiC2 --- composite --- high energy ball milling --- spark plasma sintering --- structure --- mechanical properties --- deformation behavior --- tribaloy-type alloy --- CoCrMoSi alloy coatings --- T-800 alloy --- Laves phase --- Laser Engineered Net Shaping (LENSTM) --- electron microscopy (in situ SEM) --- delamination --- metal matrix composites (MMCs) --- z-pinning

Clean Energy and Fuel (Hydrogen) Storage

Authors: ---
ISBN: 9783039216307 9783039216314 Year: Pages: 278 DOI: 10.3390/books978-3-03921-631-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures.

Keywords

dye-sensitized solar cells --- carbon materials --- Ag nanoparticles --- freestanding TiO2 nanotube arrays --- gas turbine engine --- lean direct injection --- four-point --- low emissions combustion --- carbonate gas reservoirs --- water invasion --- recovery factor --- aquifer size --- production rate --- hydrogen storage --- complex hydrides --- nanocatalyst --- LiNH2 --- MgH2 --- ball milling --- Li-ion batteries --- nanocomposite materials --- cathode --- anode --- binder --- separator --- ionic liquid --- vertically oriented graphene --- electrical double layers --- charge density --- capacitance --- gas storage --- material science --- rock permeability --- synthetic rock salt testing --- Klinkenberg method --- hydrogen storage systems --- hydrogen absorption --- thermochemical energy storage --- metal hydride --- magnetism --- heat transfer enhancement --- Power to Liquid --- Fischer–Tropsch --- dynamic modeling --- lab-scale --- lithium-ion batteries --- simplified electrochemical model --- state of charge estimator --- extended kalman filter --- hot summer and cold winter area --- PCM roof --- comprehensive incremental benefit --- conjugate phase change heat transfer --- lattice Boltzmann method --- large-scale wind farm --- auxiliary services compensation --- battery energy storage system --- optimal capacity --- equivalent loss of cycle life --- hydrogen storage --- porous media --- bacterial sulfate reduction --- methanogenesis --- gas loss --- diffusion --- reactive transport modeling --- PHREEQC --- energy discharge --- bubbles burst --- bubbles transportation --- crystal growth rates --- undercooling --- salt cavern --- leaching tubing --- flutter instability --- flow-induced vibration --- internal and reverse external axial flows --- thermal energy storage (TES) --- slag --- regenerator --- concentrated solar power (CSP) --- quality function deployment (QFD) --- failure mode and effect analysis (FMEA) --- thermal energy storage --- electrochemical energy storage --- hydrogen energy storage --- salt cavern energy storage

Marine Chitin 2019

Authors: ---
ISBN: 9783039360727 / 9783039360734 Year: Pages: 288 DOI: 10.3390/books978-3-03936-073-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

In 2019, we sent out a call for submissions to a Special Issue of Marine Drugs entitled “Marine Chitin 2019”, and we are pleased that this issue has now been published. Over 16 high-impact papers were included in this issue, which we now plan to publish as a book. In addition, we now seek to publish a further Special Issue of Marine Drugs, “Marine Chitin 2020–2021”. As before, we plan to produce an authoritative and exciting issue that will encompass breakthroughs in scientific and industrial chitin and chitosan research. Significant advances in chitin and chitosan research have been made since the 1970s, and current overviews in recent publications involving chitin and chitosan research advances are in need of an update.

Keywords

chitosan --- cytotoxicity --- polymer film --- sodium carbonate --- soluble chitosan complex --- chitin --- chitosan --- protease --- chitinase --- chitosan oligomers --- chitooligosaccharides --- anti-inflammatory action --- RAW264.7 macrophage --- chitosan oleate salt --- amphiphilic polymer --- PLGA --- nanoparticles --- mucoadhesion --- Caco-2 cell culture --- nile red --- curcumin --- chitooligosaccharide --- immunostimulatory activity --- RAW 264.7 cells --- mitogen-activated protein kinases (MAPK) --- phosphoinositide 3-kinases (PI3K)/Akt --- chitosan oligosaccharides --- streptomycin --- Pseudomonas aeruginosa --- biofilms --- conjugation --- chitin --- marine sponges --- scaffolds --- Aplysina archeri --- express method --- bromotyrosines --- crude oil --- blood --- methylene blue --- chitin --- chitosan --- Paenibacillus --- chitosanase --- chitosan oligomers --- ?-glucosidase inhibitor --- antioxidant --- Polybius henslowii --- marine resources --- chitosan --- chitooligosaccharides --- antifungal activity --- antioxidant activity --- chitin --- collagen --- electrospinning --- mechanical property --- 2D correlation spectroscopy --- polymorph --- chitosan lactate --- chitosan tartrate --- chitosan citrate --- Eudragit® S100 --- layer-by-layer film --- mucoadhesive film --- Tenofovir controlled release --- pH responsive release --- vaginal preexposure prophylaxis --- HIV sexual transmission --- chitin --- chitosan --- wound treatment --- derivatization --- nanocomposites --- chitosan --- antibacterial activity --- Clostridium perfringens --- pork sausage --- chitin --- chitosan --- chitooligosaccharides --- enzymatic modification --- biotechnology --- chitinase --- chitosanase --- lytic polysaccharide monooxygenase --- chitin deacetylase --- chitosan-coated liposomes --- chitosan hydrogel --- mucoadhesion --- vaginal infections --- antibacterial activity --- Staphylococcus epidermidis --- Staphylococcus aureus --- chitin --- roller compaction --- ball milling --- direct compression --- compression work --- crushing strength --- Hausner ratio --- Kawakita analysis --- bulk density --- dissolution

Additive Manufacturing: Alloy Design and Process Innovations

Authors: ---
ISBN: 9783039283521 / 9783039283538 Year: Pages: 372 DOI: 10.3390/books978-3-03928-353-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.

Keywords

concrete --- slag --- valorization --- cement --- circular economy --- wire feeding additive manufacturing --- wire lateral feeding --- macro defects --- side spatters --- selective laser melting --- numerical analysis --- thermal behaviour --- AlSi10Mg alloy --- design --- disc brake --- 3D metal printing --- direct metal laser sintering --- thermal stress analysis --- radial grooves --- nickel alloys --- Hastelloy X alloy --- additive manufacturing --- microstructure --- scanning electron microscopy (SEM) --- laser powder bed fusion (LPBF) --- selective laser melting --- titanium alloy --- heat treatment --- microstructure --- microhardness measurement --- arc additive manufacturing --- Al–5Si alloy --- pulse frequency --- arc current --- microstructure --- porosity --- 2219 aluminum alloy --- constitutive model --- microstructural evolution --- continuous dynamic recrystallization --- hot deformation --- selective laser melting --- amorphous alloy --- finite element analysis --- residual stress --- 2219 aluminum alloy --- intermediate thermo-mechanical treatment --- storage energy --- CuAl2 phase --- grain refinement --- selective laser melting --- GH4169 --- temperature and stress fields --- simulation --- model --- selective laser melting --- divisional scanning --- residual stress --- deformation --- thermal conductivity --- tensile strength --- inoculation --- gray cast iron --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- performance characteristics --- AlSi10Mg --- multi-laser manufacturing --- selective laser melting --- microstructure --- mechanical property --- additive manufacturing --- metal powders --- powder flowability --- powder properties --- aluminum --- water absorption --- laser cladding deposition --- 12CrNi2 alloy steel powder --- substrate preheating --- microstructure and properties --- residual stress --- ultrafast laser --- femtosecond --- ablation --- scanning --- additive surface structuring --- hydrophobicity --- parts design --- additive manufacturing --- fused filament fabrication --- fatigue --- Taguchi --- ABS --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- quality of the as-built parts --- aluminum alloys --- selective laser melting (SLM) --- mechanical properties --- selective laser melting --- H13 tool steel --- process parameters --- scanning strategy --- support strategy --- porosity reduction --- selective laser melting --- Ti6Al4V alloy --- martensitic transformation --- texture evolution --- mechanical properties --- M300 mold steel --- elastic abrasive --- PSO-BP neural network algorithm --- parameter optimization --- WxNbMoTa --- refractory high-entropy alloy --- laser cladding deposition --- rapid solidification --- bulk metallic glasses --- selective laser melting --- Cu50Zr43Al7 --- mechanical properties --- Ti-6Al-4V --- wear --- additive manufacturing --- properties --- in-process temperature in MPBAM --- analytical modeling --- high computational efficiency --- molten pool evolution --- laser power absorption --- latent heat --- scanning strategy --- powder packing --- graphene nano-sheets (GNSs) --- epoxy solder --- intermetallic compound (IMC) --- laser powder bed fusion --- additive manufacturing --- aluminum --- composition --- mechanical properties --- localized inductive heating --- hot stamping steel blanks --- tailored properties --- magnetizer --- selective laser melting --- AlSi10Mg alloy --- dynamic properties --- impact --- crystallographic texture --- Additive manufacturing --- selective laser melting --- volumetric heat source --- thermal capillary effects --- melt pool size --- selective laser melting --- Inconel 718 --- crystallographic texture --- subgranular dendrites --- epitaxial growth --- 3D printing --- continuous carbon fiber --- thermosetting epoxy resin --- mechanical properties --- Powder bed --- fatigue --- Hot Isostatic Pressure --- Electron Beam Melting --- stability lobe diagram --- milling --- process-damping --- dynamic characteristics --- thin-walled weak rigidity parts --- Al–Si --- selective laser melting (SLM) --- microstructure --- mechanical properties --- selective laser melting --- microstructure --- defects --- Inconel 718 --- laser energy density --- selective laser melting --- molten pool dynamic behavior --- equivalent processing model --- workpiece scale --- nickel-based superalloy --- numerical simulation --- metallic glasses --- composite materials --- interfaces --- additive manufacturing --- ultrasonic bonding --- 3D printing --- Al–Mg–Si alloy --- quenching rate --- microstructures --- mechanical properties --- paint bake-hardening --- precipitates --- additive manufacturing --- powder bed fusion --- selective laser melting --- regular mixing --- ball milling --- flowability --- Ti-6Al-4V --- microstructure --- element segregation --- laves phase --- vanadium --- laser cladding --- arc additive manufacture --- Al–Mg alloy --- Mg content --- microstructure --- mechanical properties --- n/a

Additive Manufacturing: Alloy Design and Process Innovations

Authors: ---
ISBN: 9783039284146 / 9783039284153 Year: Pages: 352 DOI: 10.3390/books978-3-03928-415-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.

Keywords

concrete --- slag --- valorization --- cement --- circular economy --- wire feeding additive manufacturing --- wire lateral feeding --- macro defects --- side spatters --- selective laser melting --- numerical analysis --- thermal behaviour --- AlSi10Mg alloy --- design --- disc brake --- 3D metal printing --- direct metal laser sintering --- thermal stress analysis --- radial grooves --- nickel alloys --- Hastelloy X alloy --- additive manufacturing --- microstructure --- scanning electron microscopy (SEM) --- laser powder bed fusion (LPBF) --- selective laser melting --- titanium alloy --- heat treatment --- microstructure --- microhardness measurement --- arc additive manufacturing --- Al–5Si alloy --- pulse frequency --- arc current --- microstructure --- porosity --- 2219 aluminum alloy --- constitutive model --- microstructural evolution --- continuous dynamic recrystallization --- hot deformation --- selective laser melting --- amorphous alloy --- finite element analysis --- residual stress --- 2219 aluminum alloy --- intermediate thermo-mechanical treatment --- storage energy --- CuAl2 phase --- grain refinement --- selective laser melting --- GH4169 --- temperature and stress fields --- simulation --- model --- selective laser melting --- divisional scanning --- residual stress --- deformation --- thermal conductivity --- tensile strength --- inoculation --- gray cast iron --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- performance characteristics --- AlSi10Mg --- multi-laser manufacturing --- selective laser melting --- microstructure --- mechanical property --- additive manufacturing --- metal powders --- powder flowability --- powder properties --- aluminum --- water absorption --- laser cladding deposition --- 12CrNi2 alloy steel powder --- substrate preheating --- microstructure and properties --- residual stress --- ultrafast laser --- femtosecond --- ablation --- scanning --- additive surface structuring --- hydrophobicity --- parts design --- additive manufacturing --- fused filament fabrication --- fatigue --- Taguchi --- ABS --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- quality of the as-built parts --- aluminum alloys --- selective laser melting (SLM) --- mechanical properties --- selective laser melting --- H13 tool steel --- process parameters --- scanning strategy --- support strategy --- porosity reduction --- selective laser melting --- Ti6Al4V alloy --- martensitic transformation --- texture evolution --- mechanical properties --- M300 mold steel --- elastic abrasive --- PSO-BP neural network algorithm --- parameter optimization --- WxNbMoTa --- refractory high-entropy alloy --- laser cladding deposition --- rapid solidification --- bulk metallic glasses --- selective laser melting --- Cu50Zr43Al7 --- mechanical properties --- Ti-6Al-4V --- wear --- additive manufacturing --- properties --- in-process temperature in MPBAM --- analytical modeling --- high computational efficiency --- molten pool evolution --- laser power absorption --- latent heat --- scanning strategy --- powder packing --- graphene nano-sheets (GNSs) --- epoxy solder --- intermetallic compound (IMC) --- laser powder bed fusion --- additive manufacturing --- aluminum --- composition --- mechanical properties --- localized inductive heating --- hot stamping steel blanks --- tailored properties --- magnetizer --- selective laser melting --- AlSi10Mg alloy --- dynamic properties --- impact --- crystallographic texture --- Additive manufacturing --- selective laser melting --- volumetric heat source --- thermal capillary effects --- melt pool size --- selective laser melting --- Inconel 718 --- crystallographic texture --- subgranular dendrites --- epitaxial growth --- 3D printing --- continuous carbon fiber --- thermosetting epoxy resin --- mechanical properties --- Powder bed --- fatigue --- Hot Isostatic Pressure --- Electron Beam Melting --- stability lobe diagram --- milling --- process-damping --- dynamic characteristics --- thin-walled weak rigidity parts --- Al–Si --- selective laser melting (SLM) --- microstructure --- mechanical properties --- selective laser melting --- microstructure --- defects --- Inconel 718 --- laser energy density --- selective laser melting --- molten pool dynamic behavior --- equivalent processing model --- workpiece scale --- nickel-based superalloy --- numerical simulation --- metallic glasses --- composite materials --- interfaces --- additive manufacturing --- ultrasonic bonding --- 3D printing --- Al–Mg–Si alloy --- quenching rate --- microstructures --- mechanical properties --- paint bake-hardening --- precipitates --- additive manufacturing --- powder bed fusion --- selective laser melting --- regular mixing --- ball milling --- flowability --- Ti-6Al-4V --- microstructure --- element segregation --- laves phase --- vanadium --- laser cladding --- arc additive manufacture --- Al–Mg alloy --- Mg content --- microstructure --- mechanical properties --- n/a

Listing 1 - 7 of 7
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (7)


License

CC by-nc-nd (7)


Language

english (4)

eng (3)


Year
From To Submit

2020 (3)

2019 (4)