Search results: Found 6

Listing 1 - 6 of 6
Sort by
Virus Ecology and Disturbances: Impact of Environmental Disruption on the Viruses of Microorganisms

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194483 Year: Pages: 94 DOI: 10.3389/978-2-88919-448-3 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Viruses infect numerous microorganisms including, predominantly, Bacteria (bacteriophages or phages) but also Archaea, Protists, and Fungi. They are the most abundant and ubiquitous biological entities on Earth and are important drivers of ecosystem functioning. Little is known, however, about the vast majority of these viruses of microorganisms, or VoMs. Modern techniques such as metagenomics have enabled the discovery and description of more presumptive VoMs than ever before, but also have exposed gaps in our understanding of VoM ecology. Exploring the ecology of these viruses – which is how they interact with host organisms, the abiotic environment, larger organisms, and even other viruses across a variety of environments and conditions – is the next frontier. Integration of a growing molecular understanding of VoMs with ecological studies will expand our knowledge of ecosystem dynamics. Ecology can be studied at multiple levels including individual organisms, populations, communities, whole ecosystems, and the entire biosphere. Ecology additionally can consider normal, equilibrium conditions or instead perturbations. Perturbations are of particular interest because measuring the effect of disturbances on VoM-associated communities provides important windows into how VoMs contribute to ecosystem dynamics. These disturbances in turn can be studied through in vitro, in vivo, and in situ experimentation, measuring responses by VoM-associated communities to changes in nutrient availability, stress, physical disruption, seasonality, etc., and could apply to studies at all ecological levels. These are considered here across diverse systems and environments.

Marine Viruses 2016

Author:
ISBN: 9783038426202 9783038426219 Year: Pages: 320 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-01-10 13:29:28
License:

Loading...
Export citation

Choose an application

Abstract

The research effort, publication rate and scientific community within the field of marine viruses have been growing rapidly over the past decade and viruses are now known to play key roles in microbial population dynamics, diversity and evolution as well as biogeochemical cycling.The compilation of papers included in the current Special Issue highlights the exploration of eukaryotic and prokaryotic viruses, from discovery to complex interplays between virus and host and virus–host interactions with ecologically relevant environmental variables. The discovery of novel viruses and new mechanisms underlying virus distribution and diversity exemplify the fascinating world of marine viruses. The oceans greatly shape Earth’s climate, hold 1.37 billion km3 of seawater, produce half of the oxygen in the atmosphere, and are integral to all known life. In a time where life in the oceans is under increasing threat (global warming, pollution, economic use) it is pressing to understand how viruses affect host population dynamics, biodiversity, biogeochemical cycling and ecosystem efficiency.

Virus Discovery by Metagenomics: The (Im)possibilities

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453085 Year: Pages: 216 DOI: 10.3389/978-2-88945-308-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Since the late 1800s, the discovery of new viruses was a gradual process. Viruses were described one by one using a suite of techniques such as (electron) microscopy and viral culture. Investigators were usually interested in a disease state within an organism, and expeditions in viral ecology were rare. The advent of metagenomics using high-throughput sequencing has revolutionized not only the rate of virus discovery, but also the nature of the discoveries. For example, the viral ecology and etiology of many human diseases are being characterized, non-pathogenic viral commensals are ubiquitous, and the description of environmental viromes is making progress. This Frontiers in Virology Research Topic showcases how metagenomic and bioinformatic approaches have been combined to discover, classify and characterize novel viruses.

Hurdles for Phage Therapy (PT) to Become a Reality

Author:
ISBN: 9783039213917 / 9783039213924 Year: Pages: 484 DOI: 10.3390/books978-3-03921-392-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Alternative treatment modes for antibiotic-resistant bacterial pathogens have become a public health priority. Bacteriophages are bacterial viruses that infect and lyse bacterial cells. Since bacteriophages are frequently bacterial host species-specific and can often also infect antibiotic-resistant bacterial cells, they could represent ideal antimicrobials for fighting the antibiotic resistance crisis. The medical use of bacteriophages has become known as phage therapy. It is widely used in Russia, where phage cocktails are sold in pharmacies as an over-the-counter drug. However, no phage product has been registered for medical purposes outside of the former Soviet Union. The current Special Issue of Viruses contains a collection of papers from opinion leaders in the field who explore hurdles to the introduction of phage therapy in western countries. The articles cover diverse topics ranging from patent to regulatory issues, the targeting of suitable bacterial infections, and the selection and characterization of safe and efficient phage cocktails. Phage resistance is discussed, and gaps in our knowledge of phage–bacterium interactions in the mammalian body are revealed, while other articles explore the use of phages in food production and processing.

Keywords

Staphylococcus aureus --- bacteriophage --- phage therapy --- vB_SauM-fRuSau02 --- Twortlikevirus --- antibiotic --- antimicrobial resistance --- magistral preparation --- compounding pharmacy --- phage therapy --- regulatory framework --- personalized medicine --- bacteriophage --- phage --- horizontal gene transfer --- co-evolution --- phage therapy --- industrial phage application --- antimicrobial resistance (AMR) --- Germany --- pH stability --- phage-host interactions --- genomics --- antibiotic-resistance --- phage preparation --- lysins --- biofilms --- typhoid fever --- Salmonella Typhi --- extended-spectrum beta lactamases (ESBL) --- Democratic Republic of the Congo --- bacteriophages --- MALDI-MS --- Staphylococcus --- bacteriophages --- phage therapy --- Kayvirus --- Viral proteins --- bacteriophage --- therapy --- phage therapy --- bacterial disease --- infection --- target selection --- Bacteriophage --- phage therapy --- resistance --- adaptation --- prophage --- production --- regulation --- phage therapy --- viral genomes --- best practices --- IND --- high-throughput sequencing --- bacteriophages --- phages --- food safety --- foodborne illness --- phage therapy --- history of science --- science communication --- bacteriophage --- phage therapy --- sustainable agriculture --- zoonosis --- antibiotic resistance --- phage therapy --- experimental therapy --- phage cocktails --- anti-phage antibodies --- prophage --- immunomodulation --- phage therapy --- evolution --- bacterial resistance --- virulence --- Listeria ivanovii --- bacteriophages --- alginate --- production --- disinfection --- phagodisinfection --- virus–host interactions --- bacteriophage efficacy --- gastrointestinal tract --- phage therapy --- bacteriophage --- phage therapy --- antimicrobial resistance --- antibiotic --- global health --- developing countries --- infectious disease --- bacteriophage --- phage --- phage therapy --- phage-resistance --- phage therapy --- bacterial infection --- capsule depolymerase --- antibiotic --- animal model --- bacterial resistance --- bacteriophage --- immunology --- innate immunity --- adaptive immunity --- human host --- phage-human host interaction --- bacterial infection --- antibiotic resistance --- bacteriophage --- antibiotic therapy --- phage therapy --- cases report --- abortive infection --- prophage --- adsorption --- Enterococcus --- rhamnopolysaccharide --- bacteriophage --- phage therapy --- Staphylococcus aureus --- biofilm --- antimicrobial --- frequency of resistance --- phage sensitivity --- resistance management --- nontraditional antibacterial --- bacteriophages --- phage therapy --- antibiotic resistance --- Pseudomonas aeruginosa --- Escherichia coli --- Staphylococcus aureus --- Brussels --- Belgium --- phage biocontrol --- patent landscape --- crop production --- bacteriophage --- phage therapy --- multidrug-resistant bacteria --- antimicrobial resistance --- bacteriophage therapy --- compassionate use --- antibiotic resistance --- phage therapy --- PTMP --- ATMP --- regulatory framework --- pharmaceutical paradigm shift --- clinical trial --- magistral formula --- personalized medicine --- phage therapy --- E. faecalis --- OrthoMCL --- antimicrobial resistance --- capsule --- Galleria mellonella --- Klebsiella pneumoniae --- phage therapy --- n/a --- antimicrobial resistance --- bacteriophage --- personalised medicines --- phage therapy --- pharmaceutical legislation --- regulatory framework

Biotechnological Applications of Phage and Phage-Derived Proteins

Authors: ---
ISBN: 9783039214419 / 9783039214426 Year: Pages: 236 DOI: 10.3390/books978-3-03921-442-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Phages have shown a high biotechnological potential with numerous applications. The advent of high-resolution microscopy techniques aligned with omic and molecular tools have revealed innovative phage features and enabled new processes that can be further exploited for biotechnological applications in a wide variety of fields. The high-quality original articles and reviews presented in this Special Issue demonstrate the incredible potential of phages and their derived proteins in a wide range of biotechnological applications for human benefit. Considering the emergence of amazing new available bioengineering tools and the high abundance of phages and the multitude of phage proteins yet to be discovered and studied, we believe that the upcoming years will present us with many more fascinating and new previously unimagined phage-based biotechnological applications.

Keywords

gene expression regulation --- molecular probe --- macromolecular interactions --- phage-host interaction --- bacteriophage --- endolysin --- Clostridium perfringens --- alpha-sheet --- cancerous tumors --- capsid dynamics --- drug delivery vehicles --- native gel electrophoresis --- neurodegenerative disease --- pathogenic viruses --- phage display --- landscape phage --- major coat protein --- nanomedicine --- diagnostics --- biosensors --- M13 bacteriophage --- biofilm --- porous structure --- filters --- self-assembly --- T7phage library --- sarcoidosis --- tuberculosis --- microarray --- immunoscreening --- R-type pyocin --- bacteriocin --- contractile injection systems --- Pseudomonas aeruginosa --- X-ray crystallography --- receptor-binding protein --- Shigella flexneri --- bacteriophage --- tailspike proteins --- O-antigen --- serotyping --- microtiter plate assay --- fluorescence sensor --- bacteriophages --- encapsulation --- niosomes --- transfersomes --- liposomes --- Staphylococcus aureus --- phage --- Enterococcus faecalis --- Streptococcus agalactiae --- culture enrichment --- bacteriophage --- diagnostics --- Listeria monocytogenes --- endolysin --- magnetic separation --- reporter phage --- endolysin --- Pal --- Cpl-1 --- safety --- toxicity --- immune response --- Streptococcus pneumoniae --- self-assembly --- nanotubular structures --- tail sheath protein --- bacteriophage vB_EcoM_FV3 --- Appelmans --- bacteriophage evolution --- bacteriophage recombination --- phage therapy --- Pseudomonas aeruginosa --- antibiotic resistance --- bacteriophages --- Myoviridae --- bacteriophage-derived lytic enzyme --- enzybiotics --- endolysin --- in vitro activity --- ESKAPE --- n/a

The Interplay of Microbiome and Immune Response in Health and Diseases

Authors: ---
ISBN: 9783039216468 / 9783039216475 Year: Pages: 206 DOI: 10.3390/books978-3-03921-647-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Internal medicine
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

[Increasing evidence suggests that microbiota and especially the gut microbiota (the microbes inhabiting the gut including bacteria, archaea, viruses, and fungi) plays a key role in human physiology and pathology. Recent findings indicate how dysbiosis—an imbalance in the composition and organization of microbial populations—could severely impact the development of different medical conditions (from metabolic to mood disorders), providing new insights into the comprehension of diverse diseases, such as IBD, obesity, asthma, autism, stroke, diabetes, and cancer. Given that microbial cells in the gut outnumber host cells, microbiota influences human physiology both functionally and structurally. Microbial metabolites bridge various—even distant—areas of the organism by way of the immune and hormone system. For instance, it is now clear that the mutual interaction between the gastrointestinal tract and the brain (gut–brain axis), often involves gut microbiota, indicating that the crosstalk between the organism and its microbial residents represents a fundamental aspect of both the establishment and maintenance of healthy conditions. Moreover, it is crucial to recognize that beyond the intestinal tract, microbiota populates other host organs and tissues (e.g., skin and oral mucosa). We have edited this eBook with the aim of publishing manuscripts focusing on the impact of microbiota in the development of different diseases and their associated treatments.]

Keywords

microbiota --- rheumatoid arthritis --- anti-TNF-? --- methotrexate --- etanercept --- disease activity --- microbiome --- health --- precision medicine --- genomics --- bacteriocins --- bacteriophages --- antibiotics --- gastrointestinal diseases --- dysbiosis --- gut barrier --- gut microbiota --- virus --- vaginal microbiota --- HIV --- HPV --- HSV2 --- cytokines --- chemokines --- innate immunity --- adaptive immunity --- microbiota --- autoimmunity --- etiopathogenesis --- Candida albicans --- 2,3-dihydroxy-4-methoxyBenzaldehyde --- melanin --- colitis --- anaerobic bacteria --- aerobic bacteria --- gut microbiota --- gut-liver axis --- chronic liver diseases --- fecal transplantation --- probiotics --- gut microbiota --- immunological niche --- dysbiosis --- cancer --- immune system --- cutaneous immunity --- microbiome --- Staphylococcus spp., T cells --- Staphylococcus aureus --- Staphylococcus epidermis --- commensals --- atopic dermatitis --- intravenous immunoglobulin G --- colitis --- dextran sulfate sodium --- mice --- inflammation --- cytokines --- Candida albicans --- Escherichia coli --- Enterococcus faecalis --- gut microbiota --- chemo free treatment --- lymphoid malignancies --- 16S rRNA gene --- chondroitin sulfate disaccharide --- co-occurrence network --- global network --- microbial interactions --- microbiome --- modularity --- superoxide dismutase --- gut microbiota --- macrophages --- TLR mimicry --- immune epigenetics --- metabolism --- sterile inflammation --- microbiota --- microbiome --- immunotherapy --- adoptive cell transfer (ACT) --- CAR T-cell --- TCR --- TIL --- checkpoint inhibitors --- immuno-oncology --- cancer --- diet --- n/a

Listing 1 - 6 of 6
Sort by
Narrow your search