Search results: Found 6

Listing 1 - 6 of 6
Sort by
Biochar as Soil Amendment: Impact on Soil Properties and Sustainable Resource Management

Author:
ISBN: 9783039282746 9783039282753 Year: Pages: 252 DOI: 10.3390/books978-3-03928-275-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Agriculture (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The role of biochar in improving soil fertility is increasingly being recognized and is leading to recommendations of biochar amendment of degraded soils. In addition, biochars offer a sustainable tool for managing organic wastes and to produce added-value products. The benefits of biochar use in agriculture and forestry can span enhanced plant productivity, an increase in soil C stocks, and a reduction of nutrient losses from soil and non-CO2 greenhouse gas emissions. Nevertheless, biochar composition and properties and, therefore, its performance as a soil amendment are highly dependent on the feedstock and pyrolysis conditions. In addition, due to its characteristics, such as high porosity, water retention, and adsorption capacity, there are other applications for biochar that still need to be properly tested. Thus, the 16 original articles contained in this book, which were selected and evaluated for this Special Issue, provide a comprehensive overview of the biological, chemicophysical, biochemical, and environmental aspects of the application of biochar as soil amendment. Specifically, they address the applicability of biochar for nursery growth, its effects on the productivity of various food crops under contrasting conditions, biochar capacity for pesticide retention, assessment of greenhouse gas emissions, and soil carbon dynamics. I would like to thank the contributors, reviewers, and the support of the Agronomy editorial staff, whose professionalism and dedication have made this issue possible.

Sustainable Use of Soils and Water: The Role of Environmental Land Use Conflicts

Author:
ISBN: 9783039286447 / 9783039286454 Year: Pages: 332 DOI: 10.3390/books978-3-03928-645-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Environmental Sciences
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This book on the sustainable use of soils and water addressed a variety of issues related to the utopian desire for environmental sustainability and the deviations from this scene observed in the real world. Competing interests for land are frequently a factor in land degradation, especially where the adopted land uses do not conform with the land capability (the natural use of soil). The concerns of researchers about these matters are presented in the articles comprising this Special Issue book. Various approaches were used to assess the (im)balance between economic profit and environmental conservation in various regions, in addition to potential routes to bring landscapes back to a sustainable status being disclosed.

Keywords

land eco-security --- multi-dimension --- cloud model --- set pair theory --- evaluation --- sustainable development --- water resources --- Contemporary Yellow River Delta --- groundwater depth --- temporal stability --- debris flow waste-shoal land --- land use and transformation --- driving forces analysis --- territorial development --- marginal land resources --- groundwater flow field --- scale effects --- discrete wavelet transform --- time series analysis --- multiple stresses --- land use conflicts --- encounters of interests --- landscape as geosystem --- integrative landscape management --- Trnava district --- nitrogen --- agriculture --- Nitrate Vulnerable Zones --- macromodel DNS/SWAT --- rural households’ behaviors --- arable soil --- heavy metal pollution assessment --- Lankao county --- Managed Aquifer --- Recharge --- Groundwater --- Institutions --- Ghana --- comprehensive land carrying capacity --- multi-criterion comprehensive evaluation --- analytic hierarchy process --- standard deviation --- weight --- spatial variation --- Green GDP --- Ecosystem service value --- Gross Domestic Product --- Land Use --- CA-Markov --- Land use change --- temporal-spatial variations --- environmental and economic changes --- arid region --- central Asia --- land use/cover change --- SWAT --- hydrological processes --- sustainable agriculture --- MicroLEIS DSS --- land-use planning --- soil reclamation --- groundwater recharge --- recharge zones --- river basin --- spatialization --- relief --- geology --- forest --- urbanization --- water resource management --- land use policy --- water footprint --- agricultural and livestock products --- Penman–Monteith equation --- evapotranspiration --- climate conditions --- withdrawal of agricultural land --- contributions --- developmental factors --- territorial factors --- legislative factors --- hydrologic modeling --- ungauged catchment --- stream flow downscaling --- karst aquifer --- urban area --- conjunctive water resources management --- recharge --- overexploitation --- geo hazards --- water resources --- soil --- land use change --- conflicts --- environmental degradation --- sustainability

Innovation Issues in Water, Agriculture and Food

Authors: ---
ISBN: 9783039211654 9783039211661 Year: Pages: 406 DOI: 10.3390/books978-3-03921-166-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Agriculture (General) --- Environmental Sciences
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

In a worldwide context of ever-growing competition for water and land, climate change, droughts and man-made water scarcity, and less-participatory water governance, agriculture faces the great challenge of producing enough food for a continually increasing population. In this line, this book provides a broad overview of innovation issues in the complex water–agriculture–food nexus, thus also relative to their interconnections and dependences. Issues refer to different spatial scales, from the field or the farm to the irrigation system or the river basin. Multidisciplinary approaches are used when analyzing the relationships between water, agriculture, and food security. The covered issues are quite diverse and include: innovation in crop evapotranspiration, crop coefficients and modeling; updates in research relative to crop water use and saving; irrigation scheduling and systems design; simulation models to support water and agricultural decisions; issues to cope with water scarcity and climate change; advances in water resource quality and sustainable uses; new tools for mapping and use of remote sensing information; and fostering a participative and inclusive governance of water for food security and population welfare. This book brings together a variety of contributions by leading international experts, professionals, and scholars in those diverse fields. It represents a major synthesis and state-of-the-art on various subjects, thus providing a valuable and updated resource for all researchers, professionals, policymakers, and post-graduate students interested in the complex world of the water–agriculture–food nexus.

Keywords

drought classes --- Standardized Precipitation and Evapotranspiration Index (SPEI) --- Standardized Precipitation Index (SPI) --- North Atlantic Oscillation (NAO) --- log-linear modeling --- persistence --- surface irrigation modelling --- precise land levelling --- irrigation systems design --- beneficial water use --- decision support systems (DSS) --- inflow rates --- cut-off time --- crop water requirements --- latent heat flux --- remote sensing --- olive orchard --- spatial variability --- agriculture --- impact --- measures --- nitrogen --- Sensitive Zones --- Tagus River Basin --- Vulnerable Zones --- basal crop coefficients --- crop coefficient curves --- crop transpiration --- Kcb from ground cover --- SIMDualKc model --- soil evaporation --- soil moisture --- soil temperature --- soil nutrient --- crop yield --- Corn --- Black soil --- deficit irrigation --- Fiesta grapes --- drip irrigation --- dried on the vine --- sustained deficit irrigation --- regulated deficit irrigation --- water–energy–food nexus --- policy-making --- stakeholder engagement --- fuzzy cognitive maps --- Spain --- Andalusia --- calibration --- irrigation district --- evapotranspiration --- crop growth --- validation --- Lycopersicon esculentum Mill. --- crop transpiration --- soil evaporation --- drip and basin irrigation --- deficit irrigation --- reform --- Participatory Irrigation Management --- Transfer --- water users association --- biomass --- crop transpiration --- direct forcing --- leaf area index --- soil evaporation --- soil temperature --- soil water storage depletion --- root growth --- maize yield --- semi-arid region --- actual evapotranspiration --- Pampa biome --- eddy covariance --- evaporative fraction --- hysteresis loops --- dry drainage system --- water and salt balance --- groundwater --- evaporation --- salinity --- irrigation scheduling --- wheat --- soil water balance --- new technologies --- smartphone application --- reference evapotranspiration --- local advection --- aridity effects --- satellite observations --- Evapotranspiration --- Irrigation --- Density coefficient --- Dual crop coefficients --- Row crops --- water and land management --- water users’ organization --- water balance --- supply–demand balance model --- organizational analysis --- participatory management --- pressurized irrigation systems --- on-demand operation --- perturbation --- unsteady flow --- hydrant risk indicator --- relative pressure exceedance --- agricultural intensification --- DPSIR --- nitrogen --- pressures --- policies --- surface water pollution --- water-agriculture-food nexus --- crop water use and evapotranspiration --- irrigation scheduling --- design of irrigation systems --- simulation models --- droughts --- irrigation water governance --- economic and environmental issues

Climate Variability and Climate Change Impacts on Land Surface, Hydrological Processes and Water Management

Authors: --- ---
ISBN: 9783039215072 9783039215089 Year: Pages: 460 DOI: 10.3390/books978-3-03921-508-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Environmental Sciences
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

During the last several decades, Earth´s climate has undergone significant changes due to anthropogenic global warming, and feedbacks to the water cycle. Therefore, persistent efforts are required to improve our understanding of hydrological processes and to engage in efficient water management strategies that explicitly consider changing environmental conditions. The twenty-four contributions in this book have broadly addressed topics across four major research areas: (1) Climate and land-use change impacts on hydrological processes, (2) hydrological trends and causality analysis faced in hydrology, (3) hydrological model simulations and predictions, and (4) reviews on water prices and climate extremes. The broad spectrum of international contributions to the Special Issue indicates that climate change impacts on water resources analysis attracts global attention. We hope that the collection of articles presented here can provide scientists, policymakers and stakeholders alike with insights that support sustainable decision-making in the face of climate change and increasingly scarce environmental resources.

Keywords

hydrological drought --- Three Gorges Dam --- GRACE --- compound extremes --- climate change --- multivariate distribution --- quantile regression --- indicator --- PUB --- rainfall-runoff experiments --- distributed hydrological model --- Hydro-Informatic Modelling System (HIMS) --- freshwater availability --- runoff --- simulated rainfall --- plot scale --- litter layer --- topsoil --- karst --- Yellow River Delta --- estuarine wetlands --- spatiotemporal change analysis --- remote sensing --- intra-annual climate change --- variation in percentage of flood-season precipitation --- natural streamflow variation --- contribution and sensitivity analysis --- Yellow River --- highland agricultural field area --- diffuse pollutant discharge --- multiple regression model --- climate change --- jackknife validation --- water security --- water pricing --- sustainable water management --- trends and patterns --- economics --- precipitation --- air temperature --- river discharge --- Mann-Kendall test --- Selenga river basin --- Lake Baikal basin --- Mongolia --- snowfall to precipitation ratio --- WRF model --- arid region --- Xinjiang --- water resources management --- climate change --- LULCC --- Budyko equation --- streamflow --- drought --- climate variability --- land surface change --- runoff --- Budyko framework --- elasticity coefficient --- Weihe River Basin --- flood --- streamflow --- CMIP5 --- climate change --- HEC-RAS --- trend analysis --- precipitation --- temperature --- eco-region --- Ethiopia --- Three Gorges Project --- dam --- runoff changes --- flood control --- Yangtze River --- benefits --- evapotranspiration --- Pan evaporation --- TFPW-MK --- Haihe River Basin --- hydrological simulation --- quantitative analysis --- SWAT model --- land use/cover change --- climate change --- scenario simulation --- Climate variability --- Large-scale climate indices --- Reservoir inflow forecasting --- Ensemble empirical mode decomposition --- Time series model --- Artificial intelligence model --- grid-based --- HRU-based --- SHM --- SWAT --- large scale basin --- climate change --- human activities --- power operations --- cascade joint operation chart --- inter-basin water transfer project --- climate change --- MATOPIBA agricultural frontier --- water security --- hydroclimatic analysis --- water conflicts --- average annual runoff --- runoff map --- hydrological model --- GIS --- DPR Korea --- streamflow reduction --- climate change --- coal mining --- SWCM --- coal mining concentrated watershed --- the Loess Plateau --- hydrology --- land cover --- land use and climate change --- water resources management --- macro scale modeling --- climate variability --- climate change --- land use change --- hydrological processes --- trends --- water management --- model --- predictions

Arid Land Systems: Sciences and Societies

Authors: ---
ISBN: 9783039213474 9783039213481 Year: Pages: 380 DOI: 10.3390/books978-3-03921-348-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Environmental Sciences
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Understanding deserts and drylands is essential, as arid landscapes cover >40% of the Earth and are home to two billion people. Today's problematic environment–human interaction needs contemporary knowledge to address dryland complexity. Physical dimensions in arid zones—land systems, climate and hazards, ecology—are linked with social processes that directly impact drylands, such as land management, livelihoods, and development. The challenges require integrated research that identifies systemic drivers across global arid regions. Measurement and monitoring, field investigation, remote sensing, and data analysis are effective tools to investigate natural dynamics. Equally, inquiry into how policy and practice affect landscape sustainability is key to mitigating detrimental activity in deserts. Relations between socio-economic forces and degradation, agro-pastoral rangeland use, drought and disaster and resource extraction reflect land interactions. Contemporary themes of food security, conflict, and conservation are interlinked in arid environments. This book unifies desert science, arid environments, and dryland development. The chapters identify land dynamics, address system risks and delineate human functions through original research in arid zones. Mixed methodologies highlight the vital links between social and environmental science in global deserts. The book engages with today's topical themes and presents novel analyses of arid land systems and societies.

Keywords

Central Asia --- landscape --- One Belt --- One Road --- Kazakhstan --- Kyrgyzstan --- infrastructure --- environment --- New Silk Road --- drylands --- wind erosion modelling --- drag partition --- aerodynamic roughness --- remote sensing --- computational fluid dynamics --- cellular automata --- remote sensing --- modelling --- coverage --- grass height --- Cuchillas de la Zarca --- Chobe --- forest resources --- ecosystem services --- non-linear change --- protected areas --- disturbance --- drought --- sustainable livelihoods --- ecotone --- dryland --- KAZA --- Southern Africa --- nomadic pastoralism --- spatial migration model --- Afar --- livestock --- fodder demand --- fodder supply --- Asian dust --- human health --- Mongolia --- Japan --- subarctic agriculture --- Greenland --- soil quality index --- farming at its limits --- air temperature increase --- increase of growing season --- dry lake beds --- dust storm emission --- remote sensing --- Gobi Desert region --- communal rangelands --- property rights --- environmental impacts --- policy implementation --- drylands --- arid region --- LUCC --- driving forces --- snow index --- SPOT VGT --- Kashgar Region --- degrading --- tamarind age --- regeneration --- invasive vine --- vegetation survey --- erosion --- rotational grazing --- continuous grazing --- grassland degradation --- case study of nomadic and settlement grazing system --- remote sensing --- Mongolian grassland --- arid area --- land use change --- soil carbon storage --- global carbon balance --- the Shiyang River Basin --- riparian ecosystems --- Sonoran desert --- remote sensing --- land cover/land use --- drip irrigation --- groundwater --- common-pool resource --- water rights --- local farming --- desert reclamation --- desertification --- river basin development --- political ecology --- water --- vegetation response to precipitation --- dust storm outbreak --- cross correlation analysis --- the Hovmoller diagram --- environmental regime shift --- Gobi desert of Mongolia --- climate hazard --- Asia --- drylands --- risk --- drought --- desert --- Central Asia --- Kyrgyzstan --- infrastructure --- environment --- mining --- social movements --- protest --- environmental justice --- subversive clientelism --- China --- Tibetan Plateau --- Sanjiangyuan region --- social–ecological systems --- pastoralism --- partnerships --- co-management --- national parks --- Belt and Road Initiative --- mountains of Central Asia --- pastoralism --- Ethiopia --- South Omo --- Nyangatom --- Jordan River Basin --- water productivity --- Jordan --- Israel --- Palestine --- agriculture --- agricultural water intensity --- decoupling --- water security --- institutional change --- ecosystem services --- economic valuation --- drylands --- absence --- afforestation --- charisma --- China --- conservation --- desertification --- Gobi --- Mongolia

Entropy Applications in Environmental and Water Engineering

Authors: --- ---
ISBN: 9783038972228 Year: Pages: 512 DOI: 10.3390/books978-3-03897-223-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.

Keywords

complexity --- streamflow --- water level --- composite multiscale sample entropy --- trend --- Poyang Lake basin --- four-parameter exponential gamma distribution --- principle of maximum entropy --- precipitation frequency analysis --- methods of moments --- maximum likelihood estimation --- flood frequency analysis --- generalized gamma (GG) distribution --- principle of maximum entropy (POME) --- entropy theory --- principle of maximum entropy (POME) --- GB2 distribution --- flood frequency analysis --- non-point source pollution --- ANN --- entropy weighting method --- data-scarce --- multi-events --- spatio-temporal variability --- soil water content --- entropy --- arid region --- joint entropy --- NDVI --- temperature --- precipitation --- groundwater depth --- Hei River basin --- turbulent flow --- canopy flow --- randomness --- coherent structures --- Shannon entropy --- Kolmogorov complexity --- entropy --- information transfer --- optimization --- radar --- rainfall network --- water resource carrying capacity --- forewarning model --- entropy of information --- fuzzy analytic hierarchy process --- projection pursuit --- accelerating genetic algorithm --- entropy production --- conditional entropy production --- stochastic processes --- scaling --- climacogram --- turbulence --- water resources vulnerability --- connection entropy --- changing environment --- set pair analysis --- Anhui Province --- cross-entropy minimization --- land suitability evaluation --- spatial optimization --- monthly streamflow forecasting --- Burg entropy --- configurational entropy --- entropy spectral analysis time series analysis --- entropy --- water monitoring --- network design --- hydrometric network --- information theory --- entropy applications --- hydrological risk analysis --- maximum entropy-copula method --- uncertainty --- Loess Plateau --- entropy --- water engineering --- Tsallis entropy --- principle of maximum entropy --- Lagrangian function --- probability distribution function --- flux concentration relation --- uncertainty --- information --- informational entropy --- variation of information --- continuous probability distribution functions --- confidence intervals --- precipitation --- variability --- marginal entropy --- crop yield --- Hexi corridor --- flow duration curve --- Shannon entropy --- entropy parameter --- modeling --- spatial and dynamics characteristic --- hydrology --- tropical rainfall --- statistical scaling --- Tsallis entropy --- multiplicative cascades --- Beta-Lognormal model --- rainfall forecast --- cross entropy --- ant colony fuzzy clustering --- combined forecast --- information entropy --- mutual information --- kernel density estimation --- ENSO --- nonlinear relation --- scaling laws --- power laws --- water distribution networks --- robustness --- flow entropy --- entropy theory --- frequency analysis --- hydrometeorological extremes --- Bayesian technique --- rainfall --- entropy ensemble filter --- ensemble model simulation criterion --- EEF method --- bootstrap aggregating --- bagging --- bootstrap neural networks --- El Niño --- ENSO --- neural network forecast --- sea surface temperature --- tropical Pacific --- entropy --- cross elasticity --- mean annual runoff --- water resources --- resilience --- quaternary catchment --- complement --- substitute --- entropy theory --- complex systems --- hydraulics --- hydrology --- water engineering --- environmental engineering

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by-nc-nd (6)


Language

english (5)

eng (1)


Year
From To Submit

2020 (2)

2019 (4)