Search results: Found 3

Listing 1 - 3 of 3
Sort by
Tissue Engineering and Regenerative Nanomedicine

Authors: ---
ISBN: 9783039216567 9783039216574 Year: Pages: 126 DOI: 10.3390/books978-3-03921-657-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

[This book focus on the most recent advances related to the design and processing methods of different nanobiomaterials, films, and fibers; surface functionalization strategies, including biological performance assessment and cytocompatibility; and their applications in tissue engineering strategies.]

Bioactive and Therapeutic Dental Materials

Author:
ISBN: 9783039214198 9783039214204 Year: Pages: 216 DOI: 10.3390/books978-3-03921-420-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book focus principally on ions-releasing and other smart dental materials for application in preventive and restorative dentistry, as well as in endodontics in the form of adhesives, resin-based composites, pastes, varnishes, liners and dental cements. Special attention has been given to bioactive materials developed to induce cells differentiation/stimulation, hard tissue formation and exert antimicrobial actions. New innovations are necessary to continue to help reinforcing existing technologies and to introduce new paradigms for treating dental disease and restoring teeth seriously compromised by caries lesions via biomimetic and more biological operative approaches. Dental bioactive materials is arguably the latest research area in dentistry and thus the amount of new research is overwhelming. However, in this day and age of evidence based practice it important for this new information to be distilled into a practical and understandable format.

Keywords

orthodontic resin --- photocatalyst TiO2 --- antibacterial --- cariogenic --- early colonizer --- hydrophilic properties --- irradiation --- calcium silicate cements --- pulpal response --- mineralization --- calcific barrier --- inflammation --- odontoblastic layer --- resin cements --- shrinkage stress --- water sorption --- hydroscopic expansion --- photoelastic investigation --- antibacterial --- calcium --- doxycycline --- nanoparticles --- zinc --- dental composites --- antibacterial properties --- silver --- mechanical properties --- degree of conversion --- sorption --- solubility --- color stability --- mechanical properties --- nanotubes --- resin composite --- Streptococcus mutans --- triclosan --- bleaching products --- diffusion --- cytotoxicity --- dental pulp --- stem cells --- nanoporous silica --- glass-ionomer cement --- calcium --- preclinical biosafety --- bone substitute --- mesenchymal stem cells --- ?-tricalcium phosphate --- tissue engineering --- dental sealant --- resin sealant --- calcium phosphate nanoparticles --- long-term ion release --- remineralization --- ion recharge --- dentin --- desmineralization --- microtensile bond strength --- adhesion --- bioactive --- cycling mechanical stress --- dentine --- longevity --- resin-modified glass ionomer cements --- polyacrylic acid treatment --- bone regeneration --- ?-tricalcium phosphate --- calcium sulfate --- bone substitutes --- animal study --- n/a --- adhesion --- cycling mechanical stress --- dentine --- longevity --- glass-ionomer cements --- universal adhesives

Polymeric Systems as Antimicrobial or Antifouling Agents

Authors: ---
ISBN: 9783039284566 / 9783039284573 Year: Pages: 400 DOI: 10.3390/books978-3-03928-457-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Social Sciences --- Sociology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The rapid increase in the emergence of antibiotic-resistant bacterial strains, combined with a dwindling rate of discovery of novel antibiotic molecules, has created an alarming issue worldwide. Although the occurrence of resistance in microbes is a natural process, the overuse of antibiotics is known to increase the rate of resistance evolution. Under antibiotic treatment, susceptible bacteria inevitably die, while resistant microorganisms proliferate under reduced competition. Therefore, the out-of-control use of antibiotics eliminates drug-susceptible species that would naturally limit the expansion of resistant species. In addition, the ability of many microbial species to grow as a biofilm has further complicated the treatment of infections with conventional antibiotics. A number of corrective measures are currently being explored to reverse or slow antibiotic resistance evolution, Among which one of the most promising solutions is the development of polymer-based antimicrobial compounds. In this Special Issue, different polymer systems able to prevent or treat biofilm formation, including cationic polymers, antibacterial peptide-mimetic polymers, polymers or composites able to load and release bioactive molecules, and antifouling polymers able to repel microbes by physical or chemical mechanisms are reported. Their applications in the design and fabrication of medical devices, in food packaging, and as drug carriers is investigated.

Keywords

cationic polymers --- imidization --- quaternization --- antimicrobial properties --- hemolytic activity --- coatings from nanoparticles --- biocompatible polymer --- antimicrobial polymer --- dynamic light scattering --- coatings wettability --- microbicidal coatings --- bacteria viability --- bactericidal coatings --- Escherichia coli --- Staphylococcus aureus --- Acinetobacter baumannii --- multidrug-resistant --- antimicrobial peptide --- antibiofilm activity --- physiological salt --- biofilm --- anti-biofilm surface --- surface functionalization --- ?-chymotrypsin --- proteinase --- antimicrobial polymers --- quaternary ammonium --- 2-hydroxyethyl methacrylate --- thermal stability --- polymers --- antibacterial --- drug delivery --- periodontitis --- periodontal biofilms --- polyamide 11 --- antibacterial --- polymeric biocide --- thermal stability --- biofilm --- antifouling --- copper paint --- additives --- biofilm --- lipopeptides --- biofilm --- persister cells --- ocular infections --- biofilm on contact lenses --- cuprous oxide nanoparticles --- linear low-density polyethylene --- composites --- adhesives --- antibacterial activity --- water disinfection --- active packaging --- antimicrobial peptides --- food shelf-life --- foodborne pathogens --- plastic materials --- antibacterial peptides --- halictine --- circular dichroism --- fluorescence --- infrared spectroscopy --- segmented polyurethanes --- polyethylene glycol --- microbial biofilm --- antifouling materials --- medical device-related infections --- wound dressings --- additive manufacturing --- antibacterial polymers --- biocompatible systems --- drug delivery systems --- 3D printing --- amorphous materials --- ordered mesoporous silica --- sol-gel preparation --- drug carrier --- multifunctional hybrid systems --- olive mill wastewater --- antibacterial properties --- layered double hydroxides --- bionanocomposites --- acrylates --- antibacterial activity --- copolymerization --- polymeric films --- polymerizable quaternary ammonium salts --- quaternary ammonium salts --- UV-induced polymerization --- antimicrobial resistance --- antimicrobial polymers --- ESKAPE pathogens --- anti-biofilm surfaces --- polymeric surfaces --- biofilm methods --- biofilm analysis --- biofilm devices --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

english (2)

eng (1)


Year
From To Submit

2020 (1)

2019 (2)